Improving the Convective Heat Transfer Coefficient of a New Design Helical Coiled Tube Heat Exchanger via Air Injection Technique

被引:0
|
作者
Mahood, Hameed B. [1 ,2 ]
Baqir, Ali Sh. [3 ]
Kareem, Ahmed R. [3 ]
Khadom, Anees A. [4 ]
Rashid, Khalid H. [5 ]
Campbell, Alasdair N. [6 ]
机构
[1] Univ Birmingham, Ctr Sustainable Cooling, Sch Chem Engn, Birmingham B15 2TT, England
[2] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq
[3] Al Furat Al Awsat Tech Univ, Engn Tech Coll, Najaf 31001, Iraq
[4] Univ Diyala, Coll Engn, Diyala 32001, Iraq
[5] Univ Technol Baghdad, Dept Chem Engn, Baghdad, Iraq
[6] Univ Sheffield, Fac Engn, Dept Chem & Biol Engn, Sheffield, England
关键词
Spiral-tube heat exchanger; Overall heat transfer coefficient; Air injection; Experimental technique; PRESSURE-DROP; BUBBLE INJECTION; NANOFLUID FLOW; TRANSFER ENHANCEMENT; THERMAL PERFORMANCE; NATURAL-CONVECTION; VERTICAL SHELL; SINGLE-PHASE; 2-PHASE FLOW; WATER;
D O I
10.1007/s13369-025-10038-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study experimentally investigates the effect of air injection on enhancing the overall heat transfer coefficient in a newly designed vertical helical coiled tube heat exchanger. Unlike conventional or uniform helical configurations, the new design increases the shell area coverage by coiled tube, significantly boosting the probability of bubble-coil interactions and enhancing disruption of the thermal boundary layer around the tube. In addition, the new coil geometry ensures that the mixing of the shell fluid due to bubble injection occurs effectively near the coil boundary, unforming the temperature in this zone, thereby reducing temperature polarisation and maximising the temperature gradient between the coil surface and surrounding fluid. To do so, initially, the heat transfer performance of the novel coil configuration was theoretically validated by comparing its heat transfer coefficient, expressed through the Nusselt number (Nu), with that of a conventional helical coil using an appropriate heat transfer correlation. The study further explored the influence of air injection, introduced as microbubbles on the shell side of the heat exchanger, across a broad spectrum of operating conditions. The microbubbles were generated using a porous sparger with an average pore size of 100 mu m. During the experiments, the temperature difference was maintained constant Delta T=20 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\Delta T = 20<^>\circ {\text{C}}} \right)$$\end{document}, while variations in shell-side Reynolds number Res=4825,7238and9650\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{s}=4825, 7238 \text{and} 9650\right)$$\end{document}, coil-side Reynolds number Rec=2600,5200,7800,10400and13000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{c}=2600, 5200, 7800, 10400 \text{and} 13000\right)$$\end{document}, and injected air Reynolds number Rea=0,2600,5200,7800,10400and13000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{a}=0, 2600, 5200, 7800, 10400 \text{and} 13000\right)$$\end{document} were systematically tested. The baseline tests, conducted without air injection, revealed that the new heat exchanger design outperformed the traditional coiled tube heat exchanger by approximately (average) 26%. Moreover, air injection substantially improved the overall heat transfer coefficient, achieving a maximum enhancement of 119% under the conditions of Rec=9650,Res=825andRea=10400\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{c}=9650, {\text{Re}}_{s}=825 \text{and} {\text{Re}}_{a}=10400$$\end{document}. Conversely, the minimum enhancement of 41% was observed at Rec=9650,Res=275andRea=2600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{c}=9650, {\text{Re}}_{s}=275 \text{and} {\text{Re}}_{a}=2600$$\end{document}. The ratio of U/UNE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U/{U}_{NE}$$\end{document}, representing the overall heat transfer coefficient with air injection relative to that without air injection, reached its optimal value under these optimal operating conditions.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Transient convective heat transfer in a helical coiled tube with pulsatile fully developed turbulent flow
    Guo, LJ
    Chen, XJ
    Feng, ZP
    Bai, BF
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (19) : 2867 - 2875
  • [22] Comparison of heat transfer coefficient on single tube and multi tube heat exchanger
    Permana, Ikhwan
    Ajiwiguna, Tri Ayodha
    Kirom, Mukhammad Ramdlan
    9TH INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS (ICOPIA), 2019, 1153
  • [23] Heat transfer analysis of double tube heat exchanger with helical inserts
    Padmanabhan, S.
    Reddy, Obulareddy Yuvatejeswar
    Yadav, Kanta Venkata Ajith Kumar
    Raja, V. K. Bupesh
    Palanikumar, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 3588 - 3595
  • [24] Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger
    Amir Hossein Shiravi
    Mojtaba Shafiee
    Mohammad Firoozzadeh
    Hadis Bostani
    Maryam Bozorgmehrian
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 597 - 607
  • [25] Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger
    Shiravi, Amir Hossein
    Shafiee, Mojtaba
    Firoozzadeh, Mohammad
    Bostani, Hadis
    Bozorgmehrian, Maryam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (02) : 597 - 607
  • [26] Experimental Study of Heat Transfer Rate in a Shell and Tube Heat Exchanger with Air Bubble Injection
    Nandan, A.
    Singh, G.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (08): : 1160 - 1166
  • [27] Heat transfer during annular tube contact in a helically coiled tube-in-tube heat exchanger
    Louw, WI
    Meyer, JP
    HEAT TRANSFER ENGINEERING, 2005, 26 (06) : 16 - 21
  • [28] Optimisation and evaluation of NTU and effectiveness of a helical coil tube heat exchanger with air injection
    Baqir, Ali Sh
    Mahood, Hameed B.
    Kareem, Ahmed R.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2019, 14
  • [29] Numerical investigations on the heat transfer characteristics of tube in tube helical coil heat exchanger
    Sheeba, A.
    Mathew, P.
    Prakash, Jose M.
    INTERNATIONAL CONFERENCE ON AEROSPACE AND MECHANICAL ENGINEERING, 2019, 1355
  • [30] Pressure drop and heat transfer study in tube-in-tube helical heat exchanger
    Kumar, Vimal
    Saini, Supreet
    Sharma, Manish
    Nigam, K. D. P.
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (13) : 4403 - 4416