MicroRNA functions in osteogenic differentiation of periodontal ligament stem cells: a scoping review

被引:0
|
作者
Limlawan, Pirawish [1 ,2 ]
Vacharaksa, Anjalee [3 ,4 ,5 ]
机构
[1] Chulalongkorn Univ, Fac Dent, Dept Oral Med, Bangkok, Thailand
[2] Chulalongkorn Univ, Fac Dent, Ctr Excellence & Innovat Oral Hlth & Hlth Longev, Bangkok, Thailand
[3] Chulalongkorn Univ, Fac Dent, Res Unit Oral Microbiol & Immunol, Bangkok, Thailand
[4] Chulalongkorn Univ, Fac Dent, Dept Microbiol, Bangkok, Thailand
[5] Chulalongkorn Univ, Fac Dent, Sci Program Geriatr Dent & Special Patients Care, Bangkok, Thailand
来源
关键词
microRNA; periodontal ligament stem cells; osteogenic differentiation; bone engineering; tissue regeneration; LONG NONCODING RNA; OSTEOBLAST DIFFERENTIATION; BONE-MARROW; DIABETES-MELLITUS; EXPRESSION; PROLIFERATION; REGENERATION; CYTOKINES; MEMBRANE; CAPACITY;
D O I
10.3389/froh.2025.1423226
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
This scoping review aimed to describe the differential microRNA (miRNA) functions in osteogenic differentiation of periodontal ligament stem cells (PDLSCs), and then analyze the potential of applying PDLSCs and miRNAs in bone regeneration. The databases of PubMed, Google Scholar and EBSCO search were performed by the 4 themes, including periodontal ligament stem cells, miRNA, osteogenic differentiation, and tissue regeneration. The original articles described miRNA functions in osteogenic differentiation of PDLSCs were identified and selected for content analyze. The articles suggested that PDLSCs have high potential in bone regeneration because of their multipotency and immunomodulation. PDLSCs are conveniently accessible and obtained from extracted teeth. However, recent evidence reported that PDLSCs of various origins demonstrate differential characteristics of osteogenic differentiation. Exosomal miRNAs of PDLSCs demonstrate a regulatory role in tissue regeneration. The properties of PDLSCs associated to miRNA functions are altered in differential microenvironmental conditions such as infection, inflammation, high-glucose environment, or mechanical force. Therefore, these factors must be considered when inflamed PDLSCs are used for tissue regeneration. The results suggested inflammation-free PDLSCs harvested from the middle third of root surface provide the best osteogenic potential. Alternatively, the addition of miRNA as a bioactive molecule also increases the success of PDLSCs therapy to enhance their osteogenic differentiation. In conclusion, Exosome-derived miRNAs play a key role in PDLSCs osteogenic differentiation during tissue regeneration. While the success of PDLSCs in tissue regeneration could be uncertain by many factors, the use of miRNAs as an adjunct is beneficial for new bone regeneration.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Osteogenic growth peptide enhances osteogenic differentiation of human periodontal ligament stem cells
    Purbantoro, Steven Dwi
    Osathanon, Thanaphum
    Nantavisai, Sirirat
    Sawangmake, Chenphop
    HELIYON, 2022, 8 (07)
  • [12] Osteoblast Progenitors Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells
    Yu, Miao
    Wang, Limei
    Ba, Pengfei
    Li, Linxia
    Sun, Long
    Duan, Xiaoqi
    Yang, Pishan
    Yang, Chengzhe
    Sun, Qinfeng
    JOURNAL OF PERIODONTOLOGY, 2017, 88 (10) : E159 - E168
  • [13] Effect of puerarin on osteogenic differentiation of human periodontal ligament stem cells
    Li, Jun
    Peng, Youjian
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2019,
  • [14] microRNA-21 Mediates Stretch-Induced Osteogenic Differentiation in Human Periodontal Ligament Stem Cells
    Wei, Fulan
    Liu, Dongxu
    Feng, Cheng
    Zhang, Fan
    Yang, Shuangyan
    Hu, Yijun
    Ding, Gang
    Wang, Songlin
    STEM CELLS AND DEVELOPMENT, 2015, 24 (03) : 312 - 319
  • [15] MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5
    Fulan Wei
    Shuangyan Yang
    Qingyuan Guo
    Xin Zhang
    Dapeng Ren
    Tao Lv
    Xin Xu
    Scientific Reports, 7
  • [16] MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5
    Wei, Fulan
    Yang, Shuangyan
    Guo, Qingyuan
    Zhang, Xin
    Ren, Dapeng
    Lv, Tao
    Xu, Xin
    SCIENTIFIC REPORTS, 2017, 7
  • [17] Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells
    Shen, Tao
    Qiu, Lin
    Chang, Huijun
    Yang, Yanchun
    Jian, Congxiang
    Xiong, Jian
    Zhou, Jixiang
    Dong, Shiwu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2014, 7 (11): : 7872 - 7880
  • [18] Circ_0003764 Regulates the Osteogenic Differentiation of Periodontal Ligament Stem Cells
    Wang, Hong
    Gao, Shuting
    Dissanayaka, Waruna Lakmal
    INTERNATIONAL DENTAL JOURNAL, 2024, 74 (05) : 1110 - 1119
  • [19] The Effect of Menopause Hypoestrogenism on Osteogenic Differentiation of Periodontal Ligament Cells (PDLC) and Stem Cells (PDLCs): A Systematic Review
    Di Naro, Edoardo
    Loverro, Matteo
    Converti, Ilaria
    Loverro, Maria Teresa
    Ferrara, Elisabetta
    Rapone, Biagio
    HEALTHCARE, 2021, 9 (05)
  • [20] ANGPTL4 regulates the osteogenic differentiation of periodontal ligament stem cells
    Lingli Xu
    Chengze Wang
    Yongzheng Li
    Ying Wang
    Baiping Fu
    Guoli Yang
    Functional & Integrative Genomics, 2022, 22 : 769 - 781