Simple and Effective Transfer Learning for Neuro-Symbolic Integration

被引:0
|
作者
Daniele, Alessandro [1 ]
Campari, Tommaso [1 ]
Malhotra, Sagar [2 ]
Serafini, Luciano [1 ]
机构
[1] Fdn Bruno Kessler, Trento, Italy
[2] TU Wien, Vienna, Austria
关键词
D O I
10.1007/978-3-031-71167-1_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning (DL) techniques have achieved remarkable successes in recent years. However, their ability to generalize and execute reasoning tasks remains a challenge. A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning. Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task. These methods exhibit superior generalization capacity compared to fully neural architectures. However, they suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima. This paper proposes a simple yet effective method to ameliorate these problems. The key idea involves pretraining a neural model on the downstream task. Then, a NeSy model is trained on the same task via transfer learning, where the weights of the perceptual part are injected from the pretrained network. The key observation of our work is that the neural network fails to generalize only at the level of the symbolic part while being perfectly capable of learning the mapping from perceptions to symbols. We have tested our training strategy on various SOTA NeSy methods and datasets, demonstrating consistent improvements in the aforementioned problems.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 50 条
  • [41] Neuro-symbolic AI and the semantic web
    Hitzler, Pascal
    Ebrahimi, Monireh
    Sarker, Md Kamruzzaman
    Stepanova, Daria
    SEMANTIC WEB, 2024, 15 (04) : 1261 - 1263
  • [42] Neuro-Symbolic Hierarchical Rule Induction
    Glanois, Claire
    Jiang, Zhaohui
    Feng, Xuening
    Weng, Paul
    Zimmer, Matthieu
    Li, Dong
    Liu, Wulong
    Hao, Jianye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [43] Neuro-symbolic artificial intelligence: a survey
    Bhuyan B.P.
    Ramdane-Cherif A.
    Tomar R.
    Singh T.P.
    Neural Computing and Applications, 2024, 36 (21) : 12809 - 12844
  • [44] Controlling the Production of Neuro-Symbolic Rules
    Hatzilygeroudis, Ioannis
    Prentzas, Jim
    2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 1053 - 1058
  • [45] Neuro-symbolic AI for the smart city
    Morel, Gilles
    CARBON-NEUTRAL CITIES - ENERGY EFFICIENCY AND RENEWABLES IN THE DIGITAL ERA (CISBAT 2021), 2021, 2042
  • [46] Conversational Neuro-Symbolic Commonsense Reasoning
    Arabshahi, Forough
    Lee, Jennifer
    Gawarecki, Mikayla
    Mazaitis, Kathryn
    Azaria, Amos
    Mitchell, Tom
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4902 - 4911
  • [47] Neuro-Symbolic Models for Sentiment Analysis
    Kocon, Jan
    Baran, Joanna
    Gruza, Marcin
    Janz, Arkadiusz
    Kajstura, Michal
    Kazienko, Przemyslaw
    Korczynski, Wojciech
    Milkowski, Piotr
    Piasecki, Maciej
    Szolomicka, Joanna
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 667 - 681
  • [48] Neuro-Symbolic AI for Military Applications
    Hagos, Desta Haileselassie
    Rawat, Danda B.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6012 - 6026
  • [49] Neuro-Symbolic Representations for Information Retrieval
    Dietz, Laura
    Bast, Hannah
    Chatterjee, Shubham
    Dalton, Jeff
    Nie, Jian-Yun
    Nogueira, Rodrigo
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 3436 - 3439
  • [50] Neuro-symbolic approaches in artificial intelligence
    Hitzler, Pascal
    Eberhart, Aaron
    Ebrahimi, Monireh
    Sarker, Md Kamruzzaman
    Zhou, Lu
    NATIONAL SCIENCE REVIEW, 2022, 9 (06)