Subject-Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation

被引:0
|
作者
Gaj, Sibaji [1 ]
Thoomukuntla, Bhaskar [1 ]
Ontaneda, Daniel [2 ]
Nakamura, Kunio [1 ]
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Biomed Engn, Cleveland, OH 44195 USA
[2] Cleveland Clin, Neurol Inst, Mellen Ctr Multiple Sclerosis & Res, Cleveland, OH USA
关键词
automated segmentation; deep learning; transfer learning; UNet; MRI;
D O I
10.1111/jon.70024
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose: Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning-based pipelines to improve segmentation performance for subjects in longitudinal MS datasets. Method: In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine-tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine-tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in-house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model. Results: The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in-house datasets. The LME result showed that the proposed subject-wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume. Conclusion: The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    NEUROIMAGE, 2017, 148 : 77 - 102
  • [2] Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation
    Denner, Stefan
    Khakzar, Ashkan
    Sajid, Moiz
    Saleh, Mahdi
    Spiclin, Ziga
    Kim, Seong Tae
    Navab, Nassir
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 111 - 121
  • [3] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [4] An Automatic Multiple Sclerosis Lesion Segmentation Approach based on Cellular Learning Automata
    Moghadasi, Mohammad
    Fazekas, Gabor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 178 - 183
  • [5] Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
    Birenbaum, Ariel
    Greenspan, Hayit
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 111 - 118
  • [6] A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (06) : 1349 - 1361
  • [7] Design and Implementation of the Subject-based Learning Website
    Pang, Hua
    Yang, Shu
    Wang, Jianhui
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 268 - 270
  • [8] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [9] Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation
    Weeda, M. M.
    Brouwer, I.
    de Vosa, M. L.
    de Vries, M. S.
    Barkhof, F.
    Pouwels, P. J. W.
    Vrenken, H.
    NEUROIMAGE-CLINICAL, 2019, 24
  • [10] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043