Longitudinal multiple sclerosis lesion segmentation: Resource and challenge

被引:197
|
作者
Carass, Aaron [1 ,2 ,11 ]
Roy, Snehashis [3 ,11 ]
Jog, Amod [2 ,11 ]
Cuzzocreo, Jennifer L. [4 ,11 ]
Magrath, Elizabeth [3 ,11 ]
Gherman, Adrian [5 ,11 ]
Button, Julia [4 ,11 ]
Nguyen, James [4 ]
Prados, Ferran [6 ]
Sudre, Carole H. [6 ]
Cardoso, Manuel Jorge [6 ]
Cawley, Niamh [7 ]
Ciccarelli, Olga [7 ]
Wheeler-Kingshott, Claudia A. M. [7 ]
Ourselin, Sebastien [8 ]
Catanese, Laurence [9 ]
Deshpande, Hrishikesh [9 ]
Maurel, Pierre [9 ]
Commowick, Olivier [9 ]
Barillot, Christian [9 ]
Tomas-Fernandez, Xavier [10 ]
Warfield, Simon K. [10 ]
Vaidya, Suthirth [11 ]
Chunduru, Abhijith [11 ]
Muthuganapathy, Ramanathan [11 ]
Krishnamurthi, Ganapathy [11 ]
Jesson, Andrew [12 ]
Arbel, Tal [12 ]
Maier, Oskar [13 ]
Handeles, Heinz [13 ]
Iheme, Leonardo O. [14 ]
Unay, Devrim [14 ]
Jain, Saurabh [15 ]
Sima, Diana M. [15 ]
Smeets, Dirk [15 ]
Ghafoorian, Mohsen [16 ]
Platel, Bram [17 ]
Birenbaum, Ariel [18 ]
Greenspan, Hayit [19 ]
Bazin, Pierre-Louis [20 ]
Calabresi, Peter A. [4 ]
Crainiceanu, Ciprian M. [5 ,11 ]
Ellingsen, Lotta M. [1 ,11 ,21 ]
Reich, Daniel S. [4 ,11 ,22 ]
Prince, Jerry L. [1 ,2 ,11 ]
Pham, Dzung L. [3 ,11 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, 105 Barton Hall,3400 N Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Henry M Jackson Fdn Adv Mil Med, CNRM, Bethesda, MD 20892 USA
[4] Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[6] UCL, CMIC, Translat Imaging Grp, London NW1 2HE, England
[7] UCL Inst Neurol, NMR Res Unit, London WC1N 3BG, England
[8] Univ Rennes 1, INRIA, CNRS UMR6074, VisAGeS INSERM U746, Rennes, France
[9] Boston Childrens Hosp, Computat Radiol Lab, Boston, MA 02115 USA
[10] Harvard Med Sch, Boston, MA 02115 USA
[11] IIT, Dept Engn Design, Biomed Imaging Lab, Chennai 600036, Tamil Nadu, India
[12] McGill Univ, Ctr Intelligent Machines, Montreal, PQ H3A 0E9, Canada
[13] Univ Lubeck, Inst Med Informat, D-23538 Lubeck, Germany
[14] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34349 Besiktas, Turkey
[15] Icometrix, B-3012 Leuven, Belgium
[16] Radboud Univ Nijmegen, Inst Comp & Informat Sci, NL-6525 HP Nijmegen, Netherlands
[17] Radboud Univ Nijmegen Med Ctr, Diagnost Image Anal Grp, NL-6525 GA Nijmegen, Netherlands
[18] Tel Aviv Univ, Dept Elect Engn, IL-69978 Tel Aviv, Israel
[19] Tel Aviv Univ, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[20] Max Planck Inst, Dept Neurophys, D-04103 Leipzig, Germany
[21] Univ Iceland, Dept Elect & Comp Engn, IS-107 Reykjavik, Iceland
[22] Natl Inst Neurol Disorders & Stroke, Translat Neuroradiol Unit, Bethesda, MD 20892 USA
基金
英国工程与自然科学研究理事会;
关键词
Magnetic resonance imaging; Multiple sclerosis; WHITE-MATTER LESIONS; AUTOMATIC SEGMENTATION; BRAIN MRI; UNIFIED APPROACH; EVOLUTION; IMAGES; MODEL; ATLAS; NETWORKS; FORESTS;
D O I
10.1016/j.neuroimage.2016.12.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion
引用
收藏
页码:77 / 102
页数:26
相关论文
共 50 条
  • [1] Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
    Birenbaum, Ariel
    Greenspan, Hayit
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 111 - 118
  • [2] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    [J]. MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [3] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    [J]. Neuroradiology, 2015, 57 : 1031 - 1043
  • [4] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    [J]. NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043
  • [5] Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent Neural Networks
    Tascon-Morales, Sergio
    Hoffmann, Stefan
    Treiber, Martin
    Mensing, Daniel
    Oliver, Arnau
    Guenther, Matthias
    Gregori, Johannes
    [J]. MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 148 - 158
  • [6] Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation
    Denner, Stefan
    Khakzar, Ashkan
    Sajid, Moiz
    Saleh, Mahdi
    Spiclin, Ziga
    Kim, Seong Tae
    Navab, Nassir
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 111 - 121
  • [7] Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks
    Birenbaum, Ariel
    Greenspan, Hayit
    [J]. DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 58 - 67
  • [8] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [9] A level set method for multiple sclerosis lesion segmentation
    Zhao, Yue
    Guo, Shuxu
    Luo, Min
    Shi, Xue
    Bilello, Michel
    Zhang, Shaoxiang
    Li, Chunming
    [J]. MAGNETIC RESONANCE IMAGING, 2018, 49 : 94 - 100
  • [10] A unified approach for lesion segmentation on MRI of multiple sclerosis
    Sajja, BR
    Datta, S
    He, R
    Narayana, PA
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1778 - 1781