A HIGH ORDER SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO-HADAMARD DERIVATIVE

被引:1
|
作者
Ye, Xingyang [1 ]
Cao, Junying [2 ]
Xu, Chuanju [3 ,4 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2025年 / 43卷 / 03期
关键词
Caputo-Hadamard derivative; Fractional differential equations; High order scheme; Stability and convergence analysis; LOGARITHMIC CREEP LAW; DIFFUSION; MODEL;
D O I
10.4208/jcm.2312-m2023-0098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider numerical solutions of the fractional diffusion equation with the alpha order time fractional derivative defined in the Caputo-Hadamard sense. A high order time-stepping scheme is constructed, analyzed, and numerically validated. The contribution of the paper is twofold: 1) regularity of the solution to the underlying equation is investigated, 2) a rigorous stability and convergence analysis for the proposed scheme is performed, which shows that the proposed scheme is 3 + alpha order accurate. Several numerical examples are provided to verify the theoretical statement.
引用
收藏
页码:615 / 640
页数:26
相关论文
共 50 条
  • [31] A High-Order Scheme for Fractional Ordinary Differential Equations with the Caputo–Fabrizio Derivative
    Junying Cao
    Ziqiang Wang
    Chuanju Xu
    Communications on Applied Mathematics and Computation, 2020, 2 : 179 - 199
  • [32] Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative
    Tinggang Zhao
    Changpin Li
    Dongxia Li
    Fractional Calculus and Applied Analysis, 2023, 26 : 2903 - 2927
  • [33] HOPF BIFURCATION IN CAPUTO-HADAMARD FRACTIONAL-ORDER DIFFERENTIAL SYSTEM
    Bounoua, Mohamed Doubbi
    Yin, Chuntao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [34] Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative
    Zhao, Tinggang
    Li, Changpin
    Li, Dongxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2903 - 2927
  • [35] Analysis of controllability in Caputo-Hadamard stochastic fractional differential equations with fractional Brownian motion
    Lavanya, M.
    Vadivoo, B. Sundara
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 15 - 23
  • [36] Numerical approximation and error analysis for Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [37] Sequential Caputo-Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces
    Arul, Ramasamy
    Karthikeyan, Panjayan
    Karthikeyan, Kulandhaivel
    Alruwaily, Ymnah
    Almaghamsi, Lamya
    El-hady, El-sayed
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [38] COUPLED SYSTEMS OF CAPUTO-HADAMARD DIFFERENTIAL EQUATIONS WITH COUPLED HADAMARD FRACTIONAL INTEGRAL BOUNDARY CONDITIONS
    Samadi, A.
    Ntouyas, S. K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (04): : 457 - 474
  • [39] Existence and stability of solution for a coupled system of Caputo-Hadamard fractional differential equations
    Beyene, Mesfin Teshome
    Firdi, Mitiku Daba
    Dufera, Tamirat Temesgen
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2024, 2024 (01):
  • [40] Results on non local impulsive implicit Caputo-Hadamard fractional differential equations
    Venkatachalam, K.
    Kumar, M. Sathish
    Jayakumar, P.
    MATHEMATICAL MODELLING AND CONTROL, 2024, 4 (03): : 286 - 296