STExplore: An Integrated Online Platform for Comprehensive Analysis and Visualization of Spatial Transcriptomics Data

被引:0
|
作者
Wang, Yongtian [1 ,2 ,3 ,4 ]
Luo, Jintian [5 ]
Jiao, Shaoqing [5 ]
Xie, Xiaohan [1 ,2 ,3 ]
Wang, Tao [1 ,2 ,3 ]
Liu, Jie [5 ]
Shang, Xuequn [1 ,2 ,3 ]
Peng, Jiajie [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, 1 Dongxiang Rd, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, AI Sci Interdisciplinary Res Ctr, Sch Comp Sci, 1 Dongxiang Rd, Xian 710129, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Key Lab Big Data Storage & Management, Minist Ind & Informat Technol, 1 Dongxiang Rd, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Sanhang Sci &Technol Buliding,45th,Gaoxin South 9t, Shenzhen 518063, Peoples R China
[5] Northwestern Polytech Univ, Sch Software, 1 Dongxiang Rd, Xian 710129, Shaanxi, Peoples R China
来源
SMALL METHODS | 2025年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
data analysis; interactive visualization; single-cell RNA sequencing; spatial transcriptomics; web server; SINGLE-CELL; ATLAS;
D O I
10.1002/smtd.202401272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spatial transcriptomics revolutionizes the understanding of tissue organization and cellular interactions by combining high-resolution spatial information with gene expression profiles. Existing spatial transcriptomics analysis platforms face challenges in accommodating diverse techniques, integrating multi-omics data, and providing comprehensive analytical workflows. STExplore, an advanced online platform, is developed to address these limitations. STExplore supports a wide range of technologies, including sequencing-based and image-based methods, and offers a complete analysis workflow encompassing preprocessing, integration with single-cell RNA sequencing (scRNA-seq), cluster-level and gene-level analyses, and cell-cell communication studies. The platform features dynamic parameter adjustments and interactive visualizations at each analytical stage, enabling users to gain deeper insights into the spatial transcriptomic landscape. Case studies on neurogenesis in embryonic brain development, Alzheimer's disease, and brain tissue architecture demonstrate STExplore's capabilities in enhancing gene expression analysis, revealing cellular spatial organizations, and uncovering intercellular communication patterns. STExplore provides a comprehensive and user-friendly solution for the expanding demands of spatial transcriptomics research. The platform is accessible at .
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multiservice Online Platform for Integrated Geospatial Data Processing
    Parygin, Danila
    Golubev, Alexey
    Korneev, Ilya
    Gurtyakov, Alexander
    Tsyganov, Vladimir
    Zatuliveter, Yury
    PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, : 177 - 183
  • [22] Comprehensive visualization of cell-cell interactions in single-cell and spatial transcriptomics with NICHES
    Raredon, Micha Sam Brickman
    Yang, Junchen
    Kothapalli, Neeharika
    Lewis, Wesley
    Kaminski, Naftali
    Niklason, Laura E.
    Kluger, Yuval
    BIOINFORMATICS, 2023, 39 (01)
  • [23] Analysis and Visualization of Spatial Transcriptomic Data
    Liu, Boxiang
    Li, Yanjun
    Zhang, Liang
    FRONTIERS IN GENETICS, 2022, 12
  • [24] OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization
    Mu, Hongyan
    Chen, Jianzhou
    Huang, Wenjie
    Huang, Gui
    Deng, Meiying
    Hong, Shimiao
    Ai, Peng
    Gao, Chuan
    Zhou, Huangkai
    IMETA, 2024, 3 (05):
  • [25] Advances in spatial transcriptomics and related data analysis strategies
    Du, Jun
    Yang, Yu-Chen
    An, Zhi-Jie
    Zhang, Ming-Hui
    Fu, Xue-Hang
    Huang, Zou-Fang
    Yuan, Ye
    Hou, Jian
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [26] A multi-scale analysis and visualization platform for cancer data - deriving tumor microenvironment behavior from pathology and transcriptomics
    Peterson, Joseph R.
    Shin, Matthew
    Carrigan, Patricia
    Hallock, Michael J.
    Patel, Snehal
    CANCER RESEARCH, 2022, 82 (12)
  • [27] Advances in spatial transcriptomics and related data analysis strategies
    Jun Du
    Yu-Chen Yang
    Zhi-Jie An
    Ming-Hui Zhang
    Xue-Hang Fu
    Zou-Fang Huang
    Ye Yuan
    Jian Hou
    Journal of Translational Medicine, 21
  • [28] Bento: a toolkit for subcellular analysis of spatial transcriptomics data
    Mah, Clarence K.
    Ahmed, Noorsher
    Lopez, Nicole A.
    Lam, Dylan C.
    Pong, Avery
    Monell, Alexander
    Kern, Colin
    Han, Yuanyuan
    Prasad, Gino
    Cesnik, Anthony J.
    Lundberg, Emma
    Zhu, Quan
    Carter, Hannah
    Yeo, Gene W.
    GENOME BIOLOGY, 2024, 25 (01)
  • [29] Web-TCGA: an online platform for integrated analysis of molecular cancer data sets
    Deng, Mario
    Braegelmann, Johannes
    Schultze, Joachim L.
    Perner, Sven
    BMC BIOINFORMATICS, 2016, 17
  • [30] Web-TCGA: an online platform for integrated analysis of molecular cancer data sets
    Mario Deng
    Johannes Brägelmann
    Joachim L. Schultze
    Sven Perner
    BMC Bioinformatics, 17