Out-of-Distribution Detection via outlier exposure in federated learning

被引:0
|
作者
Jeong, Gu-Bon [1 ]
Choi, Dong-Wan [1 ]
机构
[1] Inha Univ, Dept Comp Sci & Engn, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
Outlier exposure; Federated learning; FRAMEWORK;
D O I
10.1016/j.neunet.2025.107141
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among various out-of-distribution (OOD) detection methods in neural networks, outlier exposure (OE) using auxiliary data has shown to achieve practical performance. However, existing OE methods are typically assumed to run in a centralized manner, and thus are not feasible fora standard federated learning (FL) setting where each client has low computing power and cannot collect a variety of auxiliary samples. To address this issue, we propose a practical yet realistic OE scenario in FL where only the central server has a large amount of outlier data and a relatively small amount of in-distribution (ID) data is given to each client. For this scenario, we introduce an effective OE-based OOD detection method, called internal separation & backstage collaboration, which makes the best use of many auxiliary outlier samples without sacrificing the ultimate goal of FL, that is, privacy preservation as well as collaborative training performance. The most challenging part is how to make the same effect in our scenario as in joint centralized training with outliers and ID samples. Our main strategy (internal separation) is to jointly train the feature vectors of an internal layer with outliers in the back layers of the global model, while ensuring privacy preservation. We also suggest an collaborative approach (backstage collaboration) where multiple back layers are trained together to detect OOD samples. Our extensive experiments demonstrate that our method shows remarkable detection performance, compared to baseline approaches in the proposed OE scenario.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [32] In- or Out-of-Distribution Detection via Dual Divergence Estimation
    Garg, Sahil
    Dutta, Sanghamitra
    Dalirrooyfard, Mina
    Schneider, Anderson
    Nevmyvaka, Yuriy
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 635 - 646
  • [33] Self-Supervised Learning for Generalizable Out-of-Distribution Detection
    Mohseni, Sina
    Pitale, Mandar
    Yadawa, J. B. S.
    Wang, Zhangyang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5216 - 5223
  • [34] Out-of-Distribution Detection via Conditional Kernel Independence Model
    Wang, Yu
    Zou, Jingjing
    Lin, Jingyang
    Ling, Qing
    Pan, Yingwei
    Yao, Ting
    Mei, Tao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [35] Out-of-Distribution (OOD) Detection Based on Deep Learning: A Review
    Cui, Peng
    Wang, Jinjia
    ELECTRONICS, 2022, 11 (21)
  • [36] Improving Out-of-Distribution Detection by Learning from the Deployment Environment
    Inkawhich, Nathan
    Zhang, Jingyang
    Davis, Eric K.
    Luley, Ryan
    Chen, Yiran
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 2070 - 2086
  • [37] Improving Out-of-Distribution Detection by Learning From the Deployment Environment
    Inkawhich, Nathan
    Zhang, Jingyang
    Davis, Eric K.
    Luley, Ryan
    Chen, Yiran
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2070 - 2086
  • [38] Fool Me Once: Robust Selective Segmentation via Out-of-Distribution Detection with Contrastive Learning
    Williams, David S. W.
    Gadd, Matthew
    De Martini, Daniele
    Newman, Paul
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9536 - 9542
  • [39] PSEUDO-OUTLIER SYNTHESIS USING Q-GAUSSIAN DISTRIBUTIONS FOR OUT-OF-DISTRIBUTION DETECTION
    Nakamura, Ryo
    Tadokoro, Ryu
    Yamagata, Eisuke
    Kondo, Yusuke
    Hara, Kensho
    Kataoka, Hirokatsu
    Inoue, Nakamasa
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3120 - 3124
  • [40] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943