Techno-economic evaluation and multi-objective optimization of a cogeneration system integrating solid oxide fuel cell with steam Rankine and supercritical carbon dioxide Brayton cycles

被引:0
|
作者
Huang, Zihao [1 ]
You, Huailiang [1 ,2 ,4 ]
Han, Jitian [2 ]
Li, Guoxiang [2 ]
Xiao, Yan [1 ,3 ]
Hu, Bin [4 ]
Chen, Ze-Hang [5 ]
Chen, Daifen [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Peoples R China
[2] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Econ & management, Zhenjiang 212003, Peoples R China
[4] Shantui Construct Machinery Co Ltd, Jining 272073, Peoples R China
[5] Huaqiao Univ, Coll Civil Engn, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Cogeneration system; Solid oxide fuel cell; CO 2 Brayton cycle; Techno-economic analysis; Multi-objective optimization;
D O I
10.1016/j.fuel.2024.133675
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing highly efficient thermodynamic cycles is of great importance in the area of distributed energy system, there are still many non-negligible problems on feasibility assessment and performance evaluation in the application of some emerging technologies, especially involving the fuel cells and carbon dioxide power cycles. This study proposes a distributed heat and power cogeneration system composed of a solid oxide fuel cell, a gas turbine, a steam Rankine cycle, a supercritical carbon dioxide Brayton cycle, and a heat exchanger. The system mathematical model is constructed, and the investigation on system energy, exergy, economic, environmental, and techno-economic performance is performed to demonstrate the technology's feasibility and applicability. The simulation results indicate that the system can provide 367.03 kW of power and 58.02 kW of heating at the design point, and the overall electrical, exergetic, and energy efficiencies are 68.38 %, 72.41 %, and 79.19 %. The total cost rate of system is achieved to be 11.62 $/h with the system carbon dioxide emission and payback period being 0.2829 kg/kWh and 10.87 year. It can be concluded from the sensitivity analysis that the increases of the compressor pressure ratio, fuel flow rate, and SOFC inlet temperature contribute to improving the system electrical efficiency, while the carbon dioxide emission and the payback period can be reduced. Finally, multiobjective optimization of the cogeneration system is further performed to provide a strategy of performance improvement for system designers and decision makers. The optimization result indicates that though the system carbon emission is increased by 0.25 %, the system payback period and levelized cost of energy are obtained to be 9.88 year and 0.2836 kg/kWh, which are decreased by 9.11 % and 1.47 % compared to the design point.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Techno-Economic and Environmental Analysis of a Hybrid Power System Formed From Solid Oxide Fuel Cell, Gas Turbine, and Organic Rankine Cycle
    Yadav, Anil Kumar
    Kumar, Anil
    Sinha, Shailendra
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (07):
  • [32] Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell
    Zhou, Zongming
    Dhahad, Hayder A.
    Almohana, Abdulaziz Ibrahim
    Almojil, Sattam Fahad
    Alali, Abdulrhman Fahmi
    Anqi, Ali E.
    Rajhi, Ali A.
    Alamri, Sagr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) : 18648 - 18662
  • [33] Techno-Economic Optimization of an Integrated Biomass Waste Gasifier-Solid Oxide Fuel Cell Plant
    Perez-Fortes, Mar
    He, Victoria
    Nakajo, Arata
    Schiffmann, Juerg
    Marechal, Francois
    Van Herle, Jan
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [34] Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle
    Chen, Yunru
    Wang, Meng
    Liso, Vincenzo
    Samsatli, Sheila
    Samsatli, Nouri J.
    Jing, Rui
    Chen, Jincan
    Li, Ning
    Zhao, Yingru
    ENERGY CONVERSION AND MANAGEMENT, 2019, 186 : 66 - 81
  • [35] Exergoeconomic based multi-objective optimisation of a solid oxide fuel cell system
    Mert, Suha Orcun
    Ozcelik, Zehra
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF EXERGY, 2014, 14 (04) : 413 - 429
  • [36] Techno-economic and advanced exergy analysis and machine-learning-based multi-objective optimization of the combined supercritical CO2 and organic flash cycles
    Sardroud, Ramin Ghiami
    Mahmoudi, Seyed Mohammad Seyed
    Ghasemzadeh, Nima
    Avazpour, Mahyar
    Nami, Hossein
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [37] Techno-economic analysis of solar powered green hydrogen system based on multi-objective optimization of economics and productivity
    Park, Joungho
    Kang, Sungho
    Kim, Sunwoo
    Cho, Hyun-Seok
    Heo, Seongmin
    Lee, Jay H.
    ENERGY CONVERSION AND MANAGEMENT, 2024, 299
  • [38] Techno-economic analysis of solar powered green hydrogen system based on multi-objective optimization of economics and productivity
    Park, Joungho
    Kang, Sungho
    Kim, Sunwoo
    Cho, Hyun-Seok
    Heo, Seongmin
    Lee, Jay H.
    Energy Conversion and Management, 2024, 299
  • [39] Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle
    Roy, Dibyendu
    Samanta, Samiran
    Ghosh, Sudip
    JOURNAL OF CLEANER PRODUCTION, 2019, 225 : 36 - 57
  • [40] Optimization of a novel carbon dioxide cogeneration system using artificial neural network and multi-objective genetic algorithm
    Jamali, Arash
    Ahmadi, Pouria
    Jaafar, Mohammad Nazri Mohd
    APPLIED THERMAL ENGINEERING, 2014, 64 (1-2) : 293 - 306