CO2 hydrogenation to light olefins over Fe-Co/K-Al2O3 catalysts prepared via microwave calcination

被引:0
|
作者
Polsomboon, Nutkamaithorn [1 ]
Numpilai, Thanapha [2 ]
Jitapunkul, Kulpavee [1 ]
Faungnawakij, Kajornsak [3 ]
Chareonpanich, Metta [1 ,4 ]
An, Xingda [5 ,6 ]
He, Le [5 ,6 ]
Rupprechter, Guenther [7 ]
Witoon, Thongthai [1 ,4 ]
机构
[1] Kasetsart Univ, Dept Chem Engn, Ctr Excellence Adv Adsorbents & Catalysts Carbon, Fac Engn, Bangkok 10900, Thailand
[2] Thammasat Univ, Fac Sci & Technol, Dept Environm Sci, Pathum Thani 12120, Thailand
[3] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, Pathum Thani 12120, Thailand
[4] Kasetsart Univ, Ctr Adv Studies Nanotechnol Chem Food & Agr Ind, Bangkok 10900, Thailand
[5] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[6] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Jiangsu, Peoples R China
[7] Tech Univ Wien, Inst Mat Chem, Getreidemarkt 9-BC-01, A-1060 Vienna, Austria
来源
REACTION CHEMISTRY & ENGINEERING | 2025年 / 10卷 / 03期
关键词
FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; IRON; CONVERSION; REDUCTION; NANOPARTICLES; TEMPERATURE; SPECTRA; METHANE;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study evaluates the effects of microwave calcination on Fe-Co/K-Al2O3 catalysts for CO2 hydrogenation to light olefins, comparing microwave-treated samples at various power settings (700 W, 616 W, 511 W and 364 W) with a traditionally calcined counterpart. The lowest power setting results in incomplete precursor decomposition, adversely affecting Fe, K, and Al2O3 interactions. At medium power, though decomposition improves, Fe2O3 aggregates due to poor dispersion. Medium-high power produces rod-shaped structures with enhanced Fe and K contact, while the highest setting increases Fe2O3 particle size and Fe-K species content to 35.4%, still below the 37.9% observed in the traditional catalyst. Significantly, the formation of Fe-C species (Fe5C2) correlates positively with Fe-K interactions, enhancing the olefins to paraffins ratio. Additionally, the role of Fe3O4 is vital, providing the highest light olefins yield (24.5%) at an optimal Fe-C/Fe3O4 ratio of 0.34 in the medium-high power sample. Compared to the traditional catalyst, which declines significantly in CO2 conversion and olefin yield due to carbonaceous deposits over time, the medium-high power catalyst shows stable performance and reduced coke formation. Moreover, microwave calcination slashes energy consumption by over 99%, underscoring its potential for more sustainable and efficient catalyst preparation.
引用
收藏
页码:515 / 533
页数:20
相关论文
共 50 条
  • [11] Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts
    Zhang, Jianli
    Lu, Shipeng
    Su, Xiaojuan
    Fan, Subing
    Ma, Qingxiang
    Zhao, Tiansheng
    JOURNAL OF CO2 UTILIZATION, 2015, 12 : 95 - 100
  • [12] Boosting the Production of Light Olefins from CO2 Hydrogenation over Fe-Co Bimetallic Catalysts Derived from Layered Double Hydroxide
    Yuan, Fei
    Zhang, Guanghui
    Wang, Mingrui
    Zhu, Jie
    Zhang, Miao
    Ding, Fanshu
    Cheng, Zening
    Song, Chunshan
    Guo, Xinwen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (21) : 8210 - 8221
  • [13] Tuning interaction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals (Cu, Mn, V, Zn or Co) on light olefins production from CO2 hydrogenation
    Chaipraditgul, Nawapat
    Numpilai, Thanapha
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Wattanakit, Chularat
    Limtrakul, Jumras
    Witoon, Thongthai
    FUEL, 2021, 283
  • [14] Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons
    Satthawong, Ratchprapa
    Koizumi, Naoto
    Song, Chunshan
    Prasassarakich, Pattarapan
    JOURNAL OF CO2 UTILIZATION, 2013, 3-4 : 102 - 106
  • [15] MOFs-Derived Fe-Co Bimetallic Catalyst for Selective CO2 Hydrogenation to Light Olefins
    Xu, Fan
    Yang, Dandan
    Jin, Daoming
    Meng, Xin
    Zhao, Rui
    Dai, Wenhua
    Xin, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (48) : 20800 - 20811
  • [16] CO2Hydrogenation over Unsupported Fe-Co Nanoalloy Catalysts
    Calizzi, Marco
    Mutschler, Robin
    Patelli, Nicola
    Migliori, Andrea
    Zhao, Kun
    Pasquini, Luca
    Zuettel, Andreas
    NANOMATERIALS, 2020, 10 (07) : 1 - 12
  • [17] Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins
    Liang, Binglian
    Sun, Ting
    Ma, Junguo
    Duan, Hongmin
    Li, Lin
    Yang, Xiaoli
    Zhang, Yaru
    Su, Xiong
    Huang, Yanqiang
    Zhang, Tao
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (02) : 456 - 464
  • [18] Electrospun Fe-Al-O Nanobelts for Selective CO2 Hydrogenation to Light Olefins
    Elishav, Oren
    Shener, Yuval
    Beilin, Vadim
    Landau, Miron, V
    Herskowitz, Moti
    Shter, Gennady E.
    Grader, Gideon S.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24855 - 24867
  • [19] Co-Fe/Al2O3 Nanocomposite Catalysts of the Process of CO2 Hydrogenation
    A. G. Dyachenko
    O. V. Ischenko
    M. V. Borysenko
    S. V. Gaidai
    A. V. Yatsymyrskyi
    G. G. Tsapyuk
    O. V. Pryhunova
    O. O. Kostyrko
    Theoretical and Experimental Chemistry, 2022, 58 : 134 - 142
  • [20] Co-Fe/Al2O3 Nanocomposite Catalysts of the Process of CO2 Hydrogenation
    Dyachenko, A. G.
    Ischenko, O., V
    Borysenko, M., V
    Gaidai, S., V
    Yatsymyrskyi, A., V
    Tsapyuk, G. G.
    Pryhunova, O., V
    Kostyrko, O. O.
    THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2022, 58 (02) : 134 - 142