CO2 hydrogenation to light olefins over Fe-Co/K-Al2O3 catalysts prepared via microwave calcination

被引:0
|
作者
Polsomboon, Nutkamaithorn [1 ]
Numpilai, Thanapha [2 ]
Jitapunkul, Kulpavee [1 ]
Faungnawakij, Kajornsak [3 ]
Chareonpanich, Metta [1 ,4 ]
An, Xingda [5 ,6 ]
He, Le [5 ,6 ]
Rupprechter, Guenther [7 ]
Witoon, Thongthai [1 ,4 ]
机构
[1] Kasetsart Univ, Dept Chem Engn, Ctr Excellence Adv Adsorbents & Catalysts Carbon, Fac Engn, Bangkok 10900, Thailand
[2] Thammasat Univ, Fac Sci & Technol, Dept Environm Sci, Pathum Thani 12120, Thailand
[3] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, Pathum Thani 12120, Thailand
[4] Kasetsart Univ, Ctr Adv Studies Nanotechnol Chem Food & Agr Ind, Bangkok 10900, Thailand
[5] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[6] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Jiangsu, Peoples R China
[7] Tech Univ Wien, Inst Mat Chem, Getreidemarkt 9-BC-01, A-1060 Vienna, Austria
来源
REACTION CHEMISTRY & ENGINEERING | 2025年 / 10卷 / 03期
关键词
FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; IRON; CONVERSION; REDUCTION; NANOPARTICLES; TEMPERATURE; SPECTRA; METHANE;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study evaluates the effects of microwave calcination on Fe-Co/K-Al2O3 catalysts for CO2 hydrogenation to light olefins, comparing microwave-treated samples at various power settings (700 W, 616 W, 511 W and 364 W) with a traditionally calcined counterpart. The lowest power setting results in incomplete precursor decomposition, adversely affecting Fe, K, and Al2O3 interactions. At medium power, though decomposition improves, Fe2O3 aggregates due to poor dispersion. Medium-high power produces rod-shaped structures with enhanced Fe and K contact, while the highest setting increases Fe2O3 particle size and Fe-K species content to 35.4%, still below the 37.9% observed in the traditional catalyst. Significantly, the formation of Fe-C species (Fe5C2) correlates positively with Fe-K interactions, enhancing the olefins to paraffins ratio. Additionally, the role of Fe3O4 is vital, providing the highest light olefins yield (24.5%) at an optimal Fe-C/Fe3O4 ratio of 0.34 in the medium-high power sample. Compared to the traditional catalyst, which declines significantly in CO2 conversion and olefin yield due to carbonaceous deposits over time, the medium-high power catalyst shows stable performance and reduced coke formation. Moreover, microwave calcination slashes energy consumption by over 99%, underscoring its potential for more sustainable and efficient catalyst preparation.
引用
收藏
页码:515 / 533
页数:20
相关论文
共 50 条
  • [1] CO2 hydrogenation to light olefins over Fe-Co/K-Al2O3 catalysts prepared via microwave calcination
    Polsomboon, Nutkamaithorn
    Numpilai, Thanapha
    Jitapunkul, Kulpavee
    Faungnawakij, Kajornsak
    Chareonpanich, Metta
    An, Xingda
    He, Le
    Rupprechter, Guenther
    Witoon, Thongthai
    REACTION CHEMISTRY & ENGINEERING, 2024,
  • [2] Structure activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins
    Numpilai, Thanapa
    Witoon, Thongthai
    Chanlek, Narong
    Limphirat, Wanwisa
    Bonura, Giuseppe
    Chareonpanich, Metta
    Limtrakul, Jumras
    APPLIED CATALYSIS A-GENERAL, 2017, 547 : 219 - 229
  • [3] CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst
    Thanapha Numpilai
    Supitchaya Kahadit
    Thongthai Witoon
    Bamidele Victor Ayodele
    Chin Kui Cheng
    Nuchanart Siri-Nguan
    Thana Sornchamni
    Chularat Wattanakit
    Metta Chareonpanich
    Jumras Limtrakul
    Topics in Catalysis, 2021, 64 : 316 - 327
  • [4] CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst
    Numpilai, Thanapha
    Kahadit, Supitchaya
    Witoon, Thongthai
    Ayodele, Bamidele Victor
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Wattanakit, Chularat
    Chareonpanich, Metta
    Limtrakul, Jumras
    TOPICS IN CATALYSIS, 2021, 64 (5-6) : 316 - 327
  • [5] Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins
    Numpilai, Thanapha
    Chanlek, Narong
    Poo-Arporn, Yingyot
    Wannapaiboon, Suttipong
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Kongkachuichay, Paisan
    Chareonpanich, Metta
    Rupprechter, Guenther
    Limtrakul, Jumras
    Witoon, Thongthai
    APPLIED SURFACE SCIENCE, 2019, 483 : 581 - 592
  • [6] Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins
    Witoon, Thongthai
    Chaipraditgul, Nawapat
    Numpilai, Thanapha
    Lapkeatseree, Vittawin
    Ayodele, Bamidele Victor
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Limtrakul, Jumras
    CHEMICAL ENGINEERING SCIENCE, 2021, 233
  • [7] Tuning Interactions of Surface-adsorbed Species over Fe-Co/K-Al2O3 Catalyst by Different K Contents: Selective CO2 Hydrogenation to Light Olefins
    Numpilai, Thanapha
    Chanlek, Narong
    Poo-Arporn, Yingyot
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Chareonpanich, Metta
    Kongkachuichay, Paisan
    Yigit, Nevzat
    Rupprechter, Guenther
    Limtrakul, Jumras
    Witoon, Thongthai
    CHEMCATCHEM, 2020, 12 (12) : 3306 - 3320
  • [8] CO2 hydrogenation to light olefins over mixed Fe-Co-K-Al oxides catalysts prepared via precipitation and reduction methods
    Witoon, Thongthai
    Lapkeatseree, Vittawin
    Numpilai, Thanapha
    Cheng, Chin Kui
    Limtrakul, Jumras
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [9] Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts
    Satthawong, Ratchprapa
    Koizumi, Naoto
    Song, Chunshan
    Prasassarakich, Pattarapan
    CATALYSIS TODAY, 2015, 251 : 34 - 40
  • [10] Production of light olefins by catalytic hydrogenation of CO2 over Y2O3/Fe-Co modified with SAPO-34
    Oni, Babalola Aisosa
    Sanni, Samuel Eshorame
    Ibegbu, Anayo Jerome
    APPLIED CATALYSIS A-GENERAL, 2022, 643