AN INVARIANCE PRINCIPLE FOR THE 1D KPZ EQUATION

被引:0
|
作者
Adhikari, Arka [1 ]
Chatterjee, Sourav [1 ,2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA USA
来源
ANNALS OF PROBABILITY | 2024年 / 52卷 / 06期
关键词
KPZ equation; scaling limit; invariance principle; KPZ universality; END-POINT DISTRIBUTION; DIRECTED POLYMERS; LIMIT;
D O I
10.1214/23-AOP1660
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a discrete one-dimensional random surface whose height at a point grows as a function of the heights at neighboring points, plus an independent random noise. Assuming that this function is equivariant under constant shifts, symmetric in its arguments, and at least six times continuously differentiable in a neighborhood of the origin, we show that, as the variance of the noise goes to zero, any such process converges to the Cole-Hopf solution of the 1D KPZ equation under a suitable scaling of space and time. This proves an invariance principle for the 1D KPZ equation in the spirit of Donsker's invariance principle for Brownian motion.
引用
收藏
页码:2019 / 2050
页数:32
相关论文
共 50 条