Event-Based Depth Prediction With Deep Spiking Neural Network

被引:1
|
作者
Wu, Xiaoshan [1 ]
He, Weihua [2 ]
Yao, Man [4 ]
Zhang, Ziyang [3 ]
Wang, Yaoyuan [3 ]
Xu, Bo [4 ]
Li, Guoqi [4 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[3] Huawei Technol Co Ltd, Adv Comp & Storage Lab, Beijing 100095, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
关键词
Cameras; Estimation; Task analysis; Training; Computational modeling; Degradation; Data models; Depth estimation; event camera; neuromorphic computing; spiking neural network (SNN);
D O I
10.1109/TCDS.2024.3406168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event cameras have gained popularity in depth estimation due to their superior features such as high-temporal resolution, low latency, and low-power consumption. Spiking neural network (SNN) is a promising approach for processing event camera inputs due to its spike-based event-driven nature. However, SNNs face performance degradation when the network becomes deeper, affecting their performance in depth estimation tasks. To address this issue, we propose a deep spiking U-Net model. Our spiking U-Net architecture leverages refined shortcuts and residual blocks to avoid performance degradation and boost task performance. We also propose a new event representation method designed for multistep SNNs to effectively utilize depth information in the temporal dimension. Our experiments on MVSEC dataset show that the proposed method improves accuracy by 18.50% and 25.18% compared to current state-of-the-art (SOTA) ANN and SNN models, respectively. Moreover, the energy efficiency can be improved up to 58 times by our proposed SNN model compared with the corresponding ANN with the same network structure.
引用
收藏
页码:2008 / 2018
页数:11
相关论文
共 50 条
  • [1] A Spiking Neural Network Model of Depth from Defocus for Event-based Neuromorphic Vision
    Germain Haessig
    Xavier Berthelon
    Sio-Hoi Ieng
    Ryad Benosman
    Scientific Reports, 9
  • [2] Event-Based Trajectory Prediction Using Spiking Neural Networks
    Debat, Guillaume
    Chauhan, Tushar
    Cottereau, Benoit R.
    Masquelier, Timothee
    Paindavoine, Michel
    Baures, Robin
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [3] EVENT-BASED MULTIMODAL SPIKING NEURAL NETWORK WITH ATTENTION MECHANISM
    Liu, Qianhui
    Xing, Dong
    Feng, Lang
    Tang, Huajin
    Pan, Gang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8922 - 8926
  • [4] GaitSpike: Event-based Gait Recognition With Spiking Neural Network
    Tao, Ying
    Chang, Chip-Hong
    Saighi, Sylvain
    Gao, Shengyu
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 357 - 361
  • [5] Event-Based Circular Detection for AUV Docking Based on Spiking Neural Network
    Zhang, Feihu
    Zhong, Yaohui
    Chen, Liyuan
    Wang, Zhiliang
    FRONTIERS IN NEUROROBOTICS, 2022, 15
  • [6] Towards Asynchronously Triggered Spiking Neural Network on FPGA for Event-based Vision
    Wu, Zhenyu
    Song, Mo
    So, Hayden Kwok-Hay
    2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, : 292 - 293
  • [7] TactileSGNet: A Spiking Graph Neural Network for Event-based Tactile Object Recognition
    Gu, Fuqiang
    Sng, Weicong
    Taunyazov, Tasbolat
    Soh, Harold
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 9876 - 9882
  • [8] Event-based Video Reconstruction via Potential-assisted Spiking Neural Network
    Zhu, Lin
    Wang, Xiao
    Chang, Yi
    Li, Jianing
    Huang, Tiejun
    Tian, Yonghong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3584 - 3594
  • [9] Spike-EFI: Spiking Neural Network for Event-Based Video Frame Interpolation
    Wu, Dong-Sheng
    Ma, De
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023, 2024, 14403 : 312 - 325
  • [10] A Markovian event-based framework for stochastic spiking neural networks
    Touboul, Jonathan D.
    Faugeras, Olivier D.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2011, 31 (03) : 485 - 507