On duoidal ∞-categories

被引:0
|
作者
Torii, Takeshi [1 ]
机构
[1] Okayama Univ, Dept Math, Okayama 7008530, Japan
关键词
Duoidal infinity-category; Bilax monoidal functor; Bimonoid; QUASI-CATEGORIES;
D O I
10.1007/s40062-025-00364-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A duoidal category is a category equipped with two monoidal structures in which one is (op)lax monoidal with respect to the other. In this paper we introduce duoidal infinity-categories which are counterparts of duoidal categories in the setting of infinity-categories. There are three kinds of functors between duoidal infinity-categories, which are called bilax, double lax, and double oplax monoidal functors. We make three formulations of infinity-categories of duoidal infinity-categories according to which functors we take. Furthermore, corresponding to the three kinds of functors, we define bimonoids, double monoids, and double comonoids in duoidal infinity-categories.
引用
收藏
页码:125 / 162
页数:38
相关论文
共 50 条
  • [1] On Hopf monoids in duoidal categories
    Boehm, Gabriella
    Chen, Yuanyuan
    Zhang, Liangyun
    JOURNAL OF ALGEBRA, 2013, 394 : 139 - 172
  • [2] (Hopf) Bimonoids in Duoidal Categories
    Bohm, Gabriella
    HOPF ALGEBRAS AND THEIR GENERALIZATIONS FROM A CATEGORY THEORETICAL POINT OF VIEW, 2018, 2226 : 99 - 123
  • [3] Weak bimonoids in duoidal categories
    Chen, Yuanyuan
    Boehm, Gabriella
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (12) : 2240 - 2273
  • [4] TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES
    Booker, Thomas
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 166 - 205
  • [5] Operadic categories and duoidal Deligne's conjecture
    Batanin, Michael
    Markl, Martin
    ADVANCES IN MATHEMATICS, 2015, 285 : 1630 - 1687
  • [6] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Lack, Stephen
    Street, Ross
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (5-6) : 789 - 803
  • [7] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Stephen Lack
    Ross Street
    Applied Categorical Structures, 2014, 22 : 789 - 803
  • [8] ABSTRACTIONIST CATEGORIES OF CATEGORIES
    Logan, Shay Allen
    REVIEW OF SYMBOLIC LOGIC, 2015, 8 (04): : 705 - 721
  • [9] KLEISLI CATEGORIES, T-CATEGORIES AND INTERNAL CATEGORIES
    Bourn, Dominique
    THEORY AND APPLICATIONS OF CATEGORIES, 2024, 41
  • [10] Quotient categories of extriangulated categories
    Zheng, Qilian
    Cao, Weiqing
    Wei, Jiaqun
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 364 - 382