A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories

被引:0
|
作者
Stephen Lack
Ross Street
机构
[1] Macquarie University,Department of Mathematics
来源
关键词
Bialgebroid; Fusion operator; Quantum category; Monoidal bicategory; Duoidal category; Monoidale; Duoidale; Skew-monoidal category; Comonoid; Hopf monad; 18D10; 18D05; 16T15; 17B37; 20G42; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
A general result relating skew monoidal structures and monads is proved. This is applied to quantum categories and bialgebroids. Ordinary categories are monads in the bicategory whose morphisms are spans between sets. Quantum categories were originally defined as monoidal comonads on endomorphism objects in a particular monoidal bicategory ℳ. Then they were shown also to be skew monoidal structures (with an appropriate unit) on objects in ℳ. Now we see in what kind of ℳ quantum categories are merely monads.
引用
收藏
页码:789 / 803
页数:14
相关论文
共 6 条
  • [1] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Lack, Stephen
    Street, Ross
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (5-6) : 789 - 803
  • [2] The ∞-categorical Eckmann-Hilton argument
    Schlank, Tomer M.
    Yanovski, Lior
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (06): : 3119 - 3170
  • [3] The Eckmann-Hilton argument and higher operads
    Batanin, M. A.
    ADVANCES IN MATHEMATICS, 2008, 217 (01) : 334 - 385
  • [4] ON EXACTNESS OF ECKMANN-HILTON HOMOTOPY SEQUENCE
    PEARS, AR
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (05): : 671 - &
  • [5] HOMOLOGY PRODUCTS AND THE ECKMANN-HILTON GROUPS
    HOWELL, K
    MICHIGAN MATHEMATICAL JOURNAL, 1985, 32 (02) : 153 - 165
  • [6] SKEW MONOIDALES, SKEW WARPINGS AND QUANTUM CATEGORIES
    Lack, Stephen
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2012, 26 : 385 - 402