Equidistribution of expanding degenerate manifolds in the space of lattices

被引:0
|
作者
Shah, Nimish A. [1 ]
Yang, Pengyu [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH USA
[2] Chinese Acad Sci, Morningside Ctr Math, Beijing 100871, Peoples R China
关键词
HOMOGENEOUS SPACES; DIOPHANTINE APPROXIMATION; LIMIT DISTRIBUTIONS; DIRICHLETS THEOREM; INVARIANT-MEASURES; GEODESIC-FLOW; CURVES; TRAJECTORIES; POINTS;
D O I
10.1112/plms.12634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the space of unimodular lattices in a Euclidean space, we give necessary and sufficient conditions for equidistribution of expanding translates of any real-analytic submanifold under a diagonal flow. This work extends the earlier result of Shah in the case of nondegenerate submanifolds. We apply the above dynamical result to show that if the affine span of a real-analytic submanifold in a Euclidean space satisfies certain Diophantine and arithmetic conditions, then almost every point on the manifold is not Dirichlet-improvable.
引用
收藏
页数:53
相关论文
共 50 条
  • [41] On a class of degenerate complex manifolds.
    Bahraini, Alireza
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (06) : 373 - 376
  • [42] SPINOR COVARIANT DERIVATIVE ON DEGENERATE MANIFOLDS
    Sekerci, Gulsah Aydin
    Coken, Abdilkadir Ceylan
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 86 (02) : 241 - 262
  • [43] Joint partial equidistribution of Farey rays in negatively curved manifolds and trees
    Parkkonen, Jouni
    Paulin, Frederic
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (09) : 2700 - 2736
  • [44] EQUIDISTRIBUTION OF EISENSTEIN SERIES ON CONVEX CO-COMPACT HYPERBOLIC MANIFOLDS
    Guillarmou, Colin
    Naud, Frederic
    AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (02) : 445 - 479
  • [45] Equidistribution of expanding translates of curves and Dirichlet’s theorem on diophantine approximation
    Nimish A. Shah
    Inventiones mathematicae, 2009, 177 : 509 - 532
  • [46] FLAG MANIFOLDS AND TODA-LATTICES
    FLASCHKA, H
    HAINE, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (03): : 255 - 258
  • [47] Weyl groups, lattices and geometric manifolds
    Brent Everitt
    Robert B. Howlett
    Geometriae Dedicata, 2009, 142
  • [48] Isometries of Ideal Lattices and Hyperkahler Manifolds
    Boissiere, Samuel
    Camere, Chiara
    Mongardi, Giovanni
    Sarti, Alessandra
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (04) : 963 - 977
  • [49] Proper actions of lattices on contractible manifolds
    Bestvina, M
    Feighn, M
    INVENTIONES MATHEMATICAE, 2002, 150 (02) : 237 - 256
  • [50] Weyl groups, lattices and geometric manifolds
    Everitt, Brent
    Howlett, Robert B.
    GEOMETRIAE DEDICATA, 2009, 142 (01) : 1 - 21