REDUCED QUIVER QUANTUM TOROIDAL ALGEBRAS

被引:0
|
作者
Negut, Andrei [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[2] Sim Stoilow Inst Math, Bucharest, Romania
关键词
BPS algebras; quiver quantum toroidal algebras; K-theoretic Hall algebras; toric Calabi-Yau threefolds;
D O I
10.1017/S1474748024000306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a generators-and-relations description of the reduced versions of quiver quantum toroidal algebras, which act on the spaces of BPS states associated to (noncompact) toric Calabi-Yau threefolds X . As an application, we obtain a description of the K-theoretic Hall algebra of (the quiver with potential associated to) X , modulo torsion.
引用
收藏
页码:341 / 369
页数:29
相关论文
共 50 条
  • [41] Localizations for quiver Hecke algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-Jin
    Park, Euiyong
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (04) : 1465 - 1548
  • [42] RIGIDITY OF TRUNCATED QUIVER ALGEBRAS
    CIBILS, C
    ADVANCES IN MATHEMATICS, 1990, 79 (01) : 18 - 42
  • [43] Geometric realizations of quiver algebras
    Orlov, Dmitri O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 70 - 83
  • [44] Quiver varieties and Hall algebras
    Scherotzke, Sarah
    Sibilla, Nicolo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 1002 - 1018
  • [45] Noncommutative geometry and quiver algebras
    Crawley-Boevey, William
    Etingof, Pavel
    Ginzburg, Victor
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 274 - 336
  • [46] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381
  • [47] Homomorphisms between different quantum toroidal and affine Yangian algebras
    Bershtein, Mikhail
    Tsymbaliuk, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (02) : 867 - 899
  • [48] Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras
    Davison, Ben
    Meinhardt, Sven
    INVENTIONES MATHEMATICAE, 2020, 221 (03) : 777 - 871
  • [49] Quiver W-algebras
    Kimura, Taro
    Pestun, Vasily
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1351 - 1381
  • [50] Quiver algebras as Fukaya categories
    Smith, Ivan
    GEOMETRY & TOPOLOGY, 2015, 19 (05) : 2557 - 2617