Towards Stable 3D Object Detection

被引:0
|
作者
Wang, Jiabao [1 ]
Meng, Qiang [2 ]
Liu, Guochao [2 ]
Yang, Liujiang [2 ]
Wang, Ke [2 ]
Cheng, Ming-Ming [1 ,3 ]
Hou, Qibin [1 ,3 ]
机构
[1] Nankai Univ, Coll Comp Sci, VCIP, Tianjin, Peoples R China
[2] KargoBot Inc, Beijing, Peoples R China
[3] NKIARI, Shenzhen, Peoples R China
来源
关键词
3D Object Detection; Temporal Stability;
D O I
10.1007/978-3-031-72973-7_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In autonomous driving, the temporal stability of 3D object detection greatly impacts the driving safety. However, the detection stability cannot be accessed by existing metrics such as mAP and MOTA, and consequently is less explored by the community. To bridge this gap, this work proposes Stability Index (SI), a new metric that can comprehensively evaluate the stability of 3D detectors in terms of confidence, box localization, extent, and heading. By benchmarking state-of-the-art object detectors on the Waymo Open Dataset, SI reveals interesting properties of object stability that have not been previously discovered by other metrics. To help models improve their stability, we further introduce a general and effective training strategy, called Prediction Consistency Learning (PCL). PCL essentially encourages the prediction consistency of the same objects under different timestamps and augmentations, leading to enhanced detection stability. Furthermore, we examine the effectiveness of PCL with the widely-used CenterPoint, and achieve a remarkable SI of 86.00 for vehicle class, surpassing the baseline by 5.48. We hope our work could serve as a reliable baseline and draw the community's attention to this crucial issue in 3D object detection.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 50 条
  • [21] Focal Loss in 3D Object Detection
    Yun, Peng
    Tai, Lei
    Wang, Yuan
    Liu, Chengju
    Liu, Ming
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 1263 - 1270
  • [22] Mobile 3D Object Detection in Clutter
    Meger, David
    Little, James J.
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011,
  • [23] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [24] Rotationally Equivariant 3D Object Detection
    Yu, Hong-Xing
    Wu, Jiajun
    Yi, Li
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1446 - 1454
  • [25] Voxel Transformer for 3D Object Detection
    Mao, Jiageng
    Xue, Yujing
    Niu, Minzhe
    Bai, Haoyue
    Feng, Jiashi
    Liang, Xiaodan
    Xu, Hang
    Xu, Chunjing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3144 - 3153
  • [26] Disentangling Monocular 3D Object Detection
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Lopez-Antequera, Manuel
    Kontschieder, Peter
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1991 - 1999
  • [27] Interactive 3D Object Detection with Prompts
    Zhang, Ruifei
    Lin, Xiangru
    Zhang, Wei
    Lu, Jincheng
    Wang, Xuekuan
    Tan, Xiao
    Li, Yingying
    Ding, Errui
    Wang, Jingdong
    Li, Guanbin
    COMPUTER VISION - ECCV 2024, PT XVII, 2025, 15075 : 140 - 157
  • [28] 3D Object Class Detection in the Wild
    Pepik, Bojan
    Stark, Michael
    Gehler, Peter
    Ritschel, Tobias
    Schiele, Bernt
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [29] Lifting Object Detection Datasets into 3D
    Carreira, Joao
    Vicente, Sara
    Agapito, Lourdes
    Batista, Jorge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1342 - 1355
  • [30] A Heterogeneous Approach for 3D Object Detection
    Lü Z.
    Yao Z.
    Jia Y.
    Bao Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2748 - 2759