Trusted Cross-view Completion for incomplete multi-view classification

被引:0
|
作者
Zhou, Liping [1 ]
Chen, Shiyun [1 ]
Song, Peihuan [1 ]
Zheng, Qinghai [1 ]
Yu, Yuanlong [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view classification; Uncertainty-aware; Cross-view feature learning;
D O I
10.1016/j.neucom.2025.129722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real-world scenarios, missing views is common due to the complexity of data collection. Therefore, it is inevitable to classify incomplete multi-view data. Although substantial progress has been achieved, there are still two challenging problems with incomplete multi-view classification: (1) Simply ignoring these missing views is often ineffective, especially under high missing rates, which can lead to incomplete analysis and unreliable results. (2) Most existing multi-view classification models primarily focus on maximizing consistency between different views. However, neglecting specific-view information may lead to decreased performance. To solve the above problems, we propose a novel framework called Trusted Cross-View Completion (TCVC) for incomplete multi-view classification. Specifically, TCVC consists of three modules: Cross-view Feature Learning Module (CVFL), Imputation Module (IM) and Trusted Fusion Module (TFM). First, CVFL mines specific- view information to obtain cross-view reconstruction features. Then, IM restores the missing view by fusing cross-view reconstruction features with weights, guided by uncertainty-aware information. This information is the quality assessment of the cross-view reconstruction features in TFM. Moreover, the recovered views are supervised by cross-view neighborhood-aware. Finally, TFM effectively fuses complete data to generate trusted classification predictions. Extensive experiments show that our method is effective and robust.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] CGD: Multi-View Clustering via Cross-View Graph Diffusion
    Tang, Chang
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    Luo, Zhigang
    Wang, Lizhe
    Gao, Wen
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5924 - 5931
  • [22] Multi-View Stereo using Cross-View Depth Map Completion and Row-Column Depth Refinement
    Nair, Nirmal S.
    Nair, Madhu S.
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [23] Adaptive filtering for cross-view prediction in multi-view video coding
    Lai, Polin
    Su, Yeping
    Gomila, Cristina
    Ortega, Antonio
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2007, PTS 1 AND 2, 2007, 6508
  • [24] GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering
    Yan, Weiqing
    Zhang, Yuanyang
    Lv, Chenlei
    Tang, Chang
    Yue, Guanghui
    Liao, Liang
    Lin, Weisi
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19863 - 19872
  • [25] Twin Reciprocal Completion for Incomplete Multi-View Clustering
    Zheng, Qinghai
    Tang, Haoyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13201 - 13212
  • [26] Dual Completion Learning for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Zhang, Xuanqi
    Wang, Shuqin
    Li, Yuanman
    Liang, Yongsheng
    Chen, Yongyong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 455 - 467
  • [27] Incomplete multi-view clustering via diffusion completion
    Fang, Sifan
    Yang, Zuyuan
    Chen, Junhang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55889 - 55902
  • [28] Incomplete multi-view clustering via diffusion completion
    Sifan Fang
    Zuyuan Yang
    Junhang Chen
    Multimedia Tools and Applications, 2024, 83 : 55889 - 55902
  • [29] Multi-View Gait Image Generation for Cross-View Gait Recognition
    Chen, Xin
    Luo, Xizhao
    Weng, Jian
    Luo, Weiqi
    Li, Huiting
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3041 - 3055
  • [30] Multi-view classification with cross-view must-link and cannot-link side information
    Qian, Qiang
    Chen, Songcan
    Zhou, Xudong
    KNOWLEDGE-BASED SYSTEMS, 2013, 54 : 137 - 146