Trusted Cross-view Completion for incomplete multi-view classification

被引:0
|
作者
Zhou, Liping [1 ]
Chen, Shiyun [1 ]
Song, Peihuan [1 ]
Zheng, Qinghai [1 ]
Yu, Yuanlong [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view classification; Uncertainty-aware; Cross-view feature learning;
D O I
10.1016/j.neucom.2025.129722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real-world scenarios, missing views is common due to the complexity of data collection. Therefore, it is inevitable to classify incomplete multi-view data. Although substantial progress has been achieved, there are still two challenging problems with incomplete multi-view classification: (1) Simply ignoring these missing views is often ineffective, especially under high missing rates, which can lead to incomplete analysis and unreliable results. (2) Most existing multi-view classification models primarily focus on maximizing consistency between different views. However, neglecting specific-view information may lead to decreased performance. To solve the above problems, we propose a novel framework called Trusted Cross-View Completion (TCVC) for incomplete multi-view classification. Specifically, TCVC consists of three modules: Cross-view Feature Learning Module (CVFL), Imputation Module (IM) and Trusted Fusion Module (TFM). First, CVFL mines specific- view information to obtain cross-view reconstruction features. Then, IM restores the missing view by fusing cross-view reconstruction features with weights, guided by uncertainty-aware information. This information is the quality assessment of the cross-view reconstruction features in TFM. Moreover, the recovered views are supervised by cross-view neighborhood-aware. Finally, TFM effectively fuses complete data to generate trusted classification predictions. Extensive experiments show that our method is effective and robust.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cross-view graph matching for incomplete multi-view clustering
    Yang, Jing-Hua
    Fu, Le-Le
    Chen, Chuan
    Dai, Hong-Ning
    Zheng, Zibin
    NEUROCOMPUTING, 2023, 515 : 79 - 88
  • [2] Multi-view Deep Network for Cross-view Classification
    Kan, Meina
    Shan, Shiguang
    Chen, Xilin
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4847 - 4855
  • [3] Projected cross-view learning for unbalanced incomplete multi-view clustering
    Cai, Yiran
    Che, Hangjun
    Pan, Baicheng
    Leung, Man-Fai
    Liu, Cheng
    Wen, Shiping
    INFORMATION FUSION, 2024, 105
  • [4] Cross-view multi-layer perceptron for incomplete multi-view learning
    Wang, Zhi
    Zhou, Heng
    Zhong, Ping
    Zou, Hui
    APPLIED SOFT COMPUTING, 2024, 157
  • [5] Nonnegative Tensor Representation With Cross-View Consensus for Incomplete Multi-View Clustering
    Zhong, Guo
    Wu, Juanchun
    Yan, Xueming
    Ma, Xuanlong
    Lin, Shixun
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2605 - 2609
  • [6] Multi-view common component discriminant analysis for cross-view classification
    You, Xinge
    Xu, Jiamiao
    Yuan, Wei
    Jing, Xiao-Yuan
    Tao, Dacheng
    Zhang, Taiping
    PATTERN RECOGNITION, 2019, 92 : 37 - 51
  • [7] Cross-View Fusion for Multi-View Clustering
    Huang, Zhijie
    Huang, Binqiang
    Zheng, Qinghai
    Yu, Yuanlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 621 - 625
  • [8] Task-augmented cross-view imputation network for partial multi-view incomplete multi-label classification
    Zhao, Lian
    Wen, Jie
    Lu, Xiaohuan
    Wong, Wai Keung
    Long, Jiang
    Xie, Wulin
    NEURAL NETWORKS, 2025, 187
  • [9] Cross-view Graph Matching Guided Anchor Alignment for Incomplete Multi-view Clustering
    Li, Xingfeng
    Sun, Yinghui
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yuan
    INFORMATION FUSION, 2023, 100
  • [10] Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment
    Jin, Jiaqi
    Wang, Siwei
    Dong, Zhibin
    Liu, Xinwang
    Zhu, En
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11600 - 11609