The Role of Leaf Area Changes Within Plant CO2 Physiological Impacts on the Global Hydrological Cycle

被引:0
|
作者
Cordak, Alana S. [1 ]
Kooperman, Gabriel J. [1 ]
Zarakas, Claire M. [2 ]
Swann, Abigail L. S. [2 ,3 ]
Koven, Charles D. [4 ]
机构
[1] Univ Georgia, Dept Geog, Athens, GA 30602 USA
[2] Univ Washington, Dept Atmospher Sci, Seattle, WA USA
[3] Univ Washington, Dept Biol, Seattle, WA USA
[4] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
Community Earth System Model (CESM); plant CO2 physiology; hydrology; leaf area; stomatal conductance; CMIP; CARBON ALLOCATION; VEGETATION; SYSTEM; RESPONSES; TURNOVER; DROUGHT;
D O I
10.1029/2024GL110904
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Rising atmospheric CO2 concentrations enhance greenhouse warming and drive changes to plant physiology, leading to innumerable climate impacts. This study explores the impacts of plant responses on hydrological cycling at 2x preindustrial CO2 concentrations by analyzing simulations that isolate plant physiological effects using the Community Earth System Model versions 1 and 2. We find that leaf area growth increases canopy evaporation, which offsets transpiration declines, and dampens changes in global mean evapotranspiration, precipitation, and runoff in a CESM2 experiment with dynamic leaf area. These leaf area impacts are also evident in the differences between CESM1 and CESM2, with CESM2 better capturing observed leaf area magnitudes but potentially overestimating leaf area-CO2 sensitivity, highlighting the importance of plant CO2 physiology on hydrological cycle changes and the need to improve its representation in climate models.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment?
    Harmens, H
    Stirling, CM
    Marshall, C
    Farrar, JF
    ANNALS OF BOTANY, 2000, 86 (04) : 833 - 839
  • [32] Modeling of anthropogenic perturbation of the global CO2 cycle
    Semenov, SM
    DOKLADY EARTH SCIENCES, 2004, 399 (08) : 1134 - 1138
  • [33] Light and CO2 limitations of carbon fixation within the leaf
    Sun, JD
    Nishio, JN
    Vogelman, TC
    PLANT PHYSIOLOGY, 1996, 111 (02) : 353 - 353
  • [34] The Role of Plant CO2 Physiological Forcing in Shaping Future Daily-Scale Precipitation
    Skinner, Christopher B.
    Poulsen, Christopher J.
    Chadwick, Robin
    Diffenbaugh, Noah S.
    Fiorella, Richard P.
    JOURNAL OF CLIMATE, 2017, 30 (07) : 2319 - 2340
  • [35] Assessments CO2 assimilation on a per-leaf-area basis are related to total leaf area
    Righetti, Timothy L.
    Vasconcelos, Carmo
    Sandrock, David R.
    Ortega-Farias, Samuel
    Moreno, Yerko
    Meza, Francisco J.
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2007, 132 (02) : 230 - 238
  • [36] Natural gas combined cycle power plant modified into an O2/CO2 cycle for CO2 capture
    Amann, J. -M.
    Kanniche, M.
    Bouallou, C.
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 510 - 521
  • [37] USE OF PLANT LEAF AS CO2 GAS SENSING PROBE
    MATSUOKA, H
    HOMMA, T
    TAKEKAWA, Y
    AI, N
    BIOSENSORS, 1986, 2 (04) : 197 - 210
  • [38] The role of autotrophs in global CO2 cycling
    Raven, JA
    MICROBIAL GROWTH ON C(1) COMPOUNDS, 1996, : 351 - 358
  • [39] Amplification of heat extremes by plant CO2 physiological forcing
    Christopher B. Skinner
    Christopher J. Poulsen
    Justin S. Mankin
    Nature Communications, 9
  • [40] Amplification of heat extremes by plant CO2 physiological forcing
    Skinner, Christopher B.
    Poulsen, Christopher J.
    Mankin, Justin S.
    NATURE COMMUNICATIONS, 2018, 9