Correlation embedding semantic-enhanced hashing for multimedia retrieval

被引:0
|
作者
Chen, Yunfei [1 ]
Long, Yitian [2 ]
Yang, Zhan [1 ]
Long, Jun [1 ]
机构
[1] Cent South Univ, Big Data Inst, Sch Comp Sci & Engn, Changsha 410000, Hunan, Peoples R China
[2] Vanderbilt Univ, Data Sci Inst, Nashville, TN 37235 USA
基金
中国国家自然科学基金;
关键词
Multimedia retrieval; Semantic-enhanced similarity; Correlation embedding hashing; Semantic correlation information; RECONSTRUCTION;
D O I
10.1016/j.imavis.2025.105421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to its feature extraction and information processing advantages, deep hashing has achieved significant success in multimedia retrieval. Currently, mainstream unsupervised multimedia hashing methods do not incorporate associative relationship information as part of the original features in generating hash codes, and their similarity measurements do not consider the transitivity of similarity. To address these challenges, we propose the Correlation Embedding Semantic-Enhanced Hashing (CESEH) for multimedia retrieval, which primarily consists of a semantic-enhanced similarity construction module and a correlation embedding hashing module. First, the semantic-enhanced similarity construction module generates a semantically enriched similarity matrix by thoroughly exploring similarity adjacency relationships and deep semantic associations within the original data. Next, the correlation embedding hashing module integrates semantic-enhanced similarity information with intra-modal semantic information, achieves precise correlation embedding and preserves semantic information integrity. Extensive experiments on three widely-used datasets demonstrate that the CESEH method outperforms state-of-the-art unsupervised hashing methods in both retrieval accuracy and robustness. The code is available at https://github.com/YunfeiChenMY/CESEH.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Semantic Hashing for Fast Solar Magnetogram Retrieval
    Grycuk, Rafal
    Scherer, Rafal
    Marchlewska, Alina
    Napoli, Christian
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2022, 12 (04) : 299 - 306
  • [42] A semantic-enhanced trajectory visual analytics for digital forensic
    Liao, Zhi-fang
    Li, Yong
    Peng, Yanni
    Zhao, Ying
    Zhou, Fang-fang
    Liao, Zhi-ning
    Dudley, Sandra
    Ghavami, Mohammad
    JOURNAL OF VISUALIZATION, 2015, 18 (02) : 173 - 184
  • [43] A semantic-enhanced trajectory visual analytics for digital forensic
    Zhi-fang Liao
    Yong Li
    Yanni Peng
    Ying Zhao
    Fang-fang Zhou
    Zhi-ning Liao
    Sandra Dudley
    Mohammad Ghavami
    Journal of Visualization, 2015, 18 : 173 - 184
  • [44] Deep Semantic Reconstruction Hashing for Similarity Retrieval
    Wang, Yunbo
    Ou, Xianfeng
    Liang, Jian
    Sun, Zhenan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) : 387 - 400
  • [45] Latent Semantic Minimal Hashing for Image Retrieval
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (01) : 355 - 368
  • [46] Semantic Neighbor Graph Hashing for Multimodal Retrieval
    Jin, Lu
    Li, Kai
    Hu, Hao
    Qi, Guo-Jun
    Tang, Jinhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1405 - 1417
  • [47] Integration of semantic and visual hashing for image retrieval
    Zhu, Songhao
    Jin, Dongliang
    Liang, Zhiwei
    Wang, Qiang
    Sun, Yajie
    Xu, Guozheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 44 : 229 - 235
  • [48] Label-Semantic-Enhanced Online Hashing for Efficient Cross-modal Retrieval
    Jiang, Xueting
    Liu, Xin
    Cheung, Yiu-ming
    Xu, Xing
    Zheng, Shukai
    Li, Taihao
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 984 - 989
  • [49] Semantic Consistency-Enhanced Refined Hashing for Fine-Grained Image Retrieval
    Li, Shuoshuo
    Ubul, Kurban
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, PRCV 2024, 2025, 15033 : 394 - 407
  • [50] Machine learning in the Internet of Things: A semantic-enhanced approach
    Ruta, Michele
    Scioscia, Floriano
    Loseto, Giuseppe
    Pinto, Agnese
    Di Sciascio, Eugenio
    SEMANTIC WEB, 2019, 10 (01) : 183 - 204