Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot Image Classification

被引:0
|
作者
Wu, Jijie [1 ]
Chang, Dongliang [2 ]
Sain, Aneeshan [3 ]
Li, Xiaoxu [1 ]
Ma, Zhanyu [2 ]
Cao, Jie [1 ]
Guo, Jun [2 ]
Song, Yi-Zhe [3 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Univ Surrey, SketchX, CVSSP, Guildford, England
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main challenge for fine-grained few-shot image classification is to learn feature representations with higher inter-class and lower intra-class variations, with a mere few labelled samples. Conventional few-shot learning methods however cannot be naively adopted for this fine-grained setting - a quick pilot study reveals that they in fact push for the opposite (i.e., lower inter-class variations and higher intra-class variations). To alleviate this problem, prior works predominately use a support set to reconstruct the query image and then utilize metric learning to determine its category. Upon careful inspection, we further reveal that such unidirectional reconstruction methods only help to increase inter-class variations and are not effective in tackling intra-class variations. In this paper, we for the first time introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations. In addition to using the support set to reconstruct the query set for increasing inter-class variations, we further use the query set to reconstruct the support set for reducing intra-class variations. This design effectively helps the model to explore more subtle and discriminative features which is key for the fine-grained problem in hand. Furthermore, we also construct a self-reconstruction module to work alongside the bi-directional module to make the features even more discriminative. Experimental results on three widely used fine-grained image classification datasets consistently show considerable improvements compared with other methods. Codes are available at: https://github. com/PRIS-CV/Bi-FRN.
引用
收藏
页码:2821 / 2829
页数:9
相关论文
共 50 条
  • [31] Low-Rank Pairwise Alignment Bilinear Network For Few-Shot Fine-Grained Image Classification
    Huang, Huaxi
    Zhang, Junjie
    Zhang, Jian
    Xu, Jingsong
    Wu, Qiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1666 - 1680
  • [32] Part-Level Relationship Learning for Fine-Grained Few-Shot Image Classification
    Wang, Chuanming
    Fu, Huiyuan
    Liu, Peiye
    Ma, Huadong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1448 - 1460
  • [33] A few-shot fine-grained image classification method leveraging global and local structures
    Cao, Siyu
    Wang, Wen
    Zhang, Jing
    Zheng, Min
    Li, Qingyong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (08) : 2273 - 2281
  • [34] A few-shot fine-grained image classification method leveraging global and local structures
    Siyu Cao
    Wen Wang
    Jing Zhang
    Min Zheng
    Qingyong Li
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 2273 - 2281
  • [35] Generalized Ridge Regression-Based Channelwise Feature Map Weighted Reconstruction Network for Fine-Grained Few-Shot Ship Classification
    Li, Yangfan
    Bian, Chunjiang
    Chen, Hongzhen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features
    Fan, Miao
    Bai, Yeqi
    Sun, Mingming
    Li, Ping
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2353 - 2356
  • [37] A conditioned feature reconstruction network for few-shot classification
    Song, Bin
    Zhu, Hong
    Bi, Yuandong
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6592 - 6605
  • [38] Bi-channel attention meta learning for few-shot fine-grained image recognition
    Wang, Yao
    Ji, Yang
    Wang, Wei
    Wang, Bailing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [39] KNOWLEDGE-BASED FINE-GRAINED CLASSIFICATION FOR FEW-SHOT LEARNING
    Zhao, Jiabao
    Lin, Xin
    Zhou, Jie
    Yang, Jing
    He, Liang
    Yang, Zhaohui
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [40] A Multiview Metric Learning Method for Few-Shot Fine-Grained Classification
    Miao, Zhuang
    Zhao, Xun
    Wang, Jiabao
    Xu, Bo
    Li, Yang
    Li, Hang
    IEEE ACCESS, 2022, 10 : 52782 - 52790