The fractional nonlinear Schrodinger equation: Soliton turbulence, modulation instability, and extreme rogue waves

被引:2
|
作者
Zhong, Ming [1 ,2 ]
Weng, Weifang [3 ]
Guo, Boling [4 ]
Yan, Zhenya [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[4] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRABLE TURBULENCE; MECHANISMS; WATER;
D O I
10.1063/5.0242142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we undertake a systematic exploration of soliton turbulent phenomena and the emergence of extreme rogue waves within the framework of the one-dimensional fractional nonlinear Schr & ouml;dinger (FNLS) equation, which appears in many fields, such as nonlinear optics, Bose-Einstein condensates, plasma physics, etc. By initiating simulations with a plane wave modulated by small noise, we scrutinized the universal regimes of non-stationary turbulence through various statistical indices. Our analysis elucidates a marked increase in the probability of rogue wave occurrences as the system evolves within a certain range of L & eacute;vy index alpha, which can be ascribed to the broadened modulation instability bandwidth. This heightened probability of extreme rogue waves is corroborated through multiple facets, including wave-action spectrum, fourth-order moments, and probability density functions. However, it is crucial to acknowledge that a decrease in alpha also results in a reduction in the propagation speed of solitons within the system. Consequently, only high-amplitude solitons with non-zero background are observed, and the occurrence of collisions that could generate higher-amplitude rogue waves is suppressed. This introduces an inverse competitive mechanism: while a lower alpha expands the bandwidth of modulation instability, it concurrently impairs the mobility of solitons. Our findings contribute to a deeper understanding of the mechanisms driving the formation of rogue waves in nonlinear fractional systems, offering valuable insights for future theoretical and experimental studies.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schrodinger equation with variable coefficients
    Yu, Fajun
    Yan, Zhenya
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 351 - 358
  • [42] Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [43] Three-component coupled nonlinear Schrodinger equation: optical soliton and modulation instability analysis
    Sulaiman, Tukur Abdulkadir
    PHYSICA SCRIPTA, 2020, 95 (06)
  • [44] Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrodinger equation
    Rizvi, Syed T. R.
    Seadawy, Aly R.
    Ahmed, Sarfaraz
    Younis, Muhammad
    Ali, Kashif
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [45] Breathers, rogue waves and breather-rogue waves on a periodic background for the modified nonlinear Schrodinger equation
    Wu, Qing-Lin
    Zhang, Hai-Qiang
    WAVE MOTION, 2022, 110
  • [46] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrodinger equation
    Tao Yong-Sheng
    He Jing-Song
    Porsezian, K.
    CHINESE PHYSICS B, 2013, 22 (07)
  • [47] Nonlinear Dynamics of Rogue Waves in a Fifth-Order Nonlinear Schrodinger Equation
    Song, Ni
    Xue, Hui
    Zhao, Xiaoying
    IEEE ACCESS, 2020, 8 : 9610 - 9618
  • [48] OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL PERTURBED NONLINEAR SCHRODINGER EQUATION
    Ali, Khalid Karam
    Karakoc, Seydi Battal Gazi
    Rezazadeh, Hadi
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 930 - 939
  • [49] Modulation instability, rogue waves and spectral analysis for the sixth -order nonlinear Schr?dinger equation
    Yue, Yunfei
    Huang, Lili
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 89
  • [50] Modulation instability and rogue waves for two and three dimensional nonlinear Klein-Gordon equation
    Yang, Zhiqiang
    Mu, Gui
    Qin, Zhenyun
    CHAOS, 2024, 34 (09)