Induced saturation for complete bipartite posets

被引:0
|
作者
Liu, Dingyuan [1 ]
机构
[1] Karlsruhe Inst Technol, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Poset saturation; Complete bipartite posets;
D O I
10.1016/j.disc.2025.114462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given s, t E N, a complete bipartite poset Ks,t is a poset whose Hasse diagram consists of s pairwise incomparable vertices in the upper layer and t pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family F c 2[n] is called induced Ks,t-saturated if (F, c) contains no induced copy of Ks,t, whereas adding any set from 2[n]\F to F creates an induced Ks,t. Let sat & lowast;(n, Ks,t) denote the smallest size of an induced Ks,t-saturated family F c 2[n]. It was conjectured that sat & lowast;(n, Ks,t) is superlinear in n for certain values of sand t. In this paper, we show that sat & lowast;(n, Ks,t) = O(n) for all fixed s, t E N. Moreover, we prove a linear lower bound on sat & lowast;(n, P) for a large class of posets P, particularly for Ks,2 with s E N. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Weak saturation number of a complete bipartite graph *
    Xu, Tongtong
    Wu, Baoyindureng
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 455
  • [2] Weak saturation numbers of complete bipartite graphs in the clique
    Kronenberg, Gal
    Martins, Taisa
    Morrison, Natasha
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [3] REPRESENTATIONS OF BIPARTITE COMPLETED POSETS
    NAZAROVA, LA
    ROITER, AV
    COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (03) : 498 - 526
  • [4] RANDOM BIPARTITE POSETS AND EXTREMAL PROBLEMS
    Biro, C.
    Hamburger, P.
    Kierstead, H. A.
    Por, A.
    Trotter, W. T.
    Wang, R.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 618 - 646
  • [5] Random bipartite posets and extremal problems
    C. Biró
    P. Hamburger
    H. A. Kierstead
    A. Pór
    W. T. Trotter
    R. Wang
    Acta Mathematica Hungarica, 2020, 161 : 618 - 646
  • [6] Bipartite posets of finite prinjective type
    von Hohne, HJ
    Simson, D
    JOURNAL OF ALGEBRA, 1998, 201 (01) : 86 - 114
  • [7] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480
  • [8] Complete bipartite factorisations by complete bipartite graphs
    Martin, N.
    Discrete Mathematics, 1997, 167-168 : 461 - 480
  • [9] THE MAXIMAL NUMBER OF INDUCED COMPLETE BIPARTITE GRAPHS
    BOLLOBAS, B
    NARA, C
    TACHIBANA, S
    DISCRETE MATHEMATICS, 1986, 62 (03) : 271 - 275
  • [10] Idempotent Varieties of Incidence Monoids and Bipartite Posets
    Mahir Bilen Can
    Ana Casimiro
    António Malheiro
    Algebras and Representation Theory, 2023, 26 : 1975 - 2000