Molecular Clustering of Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Transcriptome Analysis

被引:0
|
作者
Ryu, Gina [1 ]
Yoon, Eileen Laurel [2 ,3 ]
Kim, Wankyu [1 ]
Jun, Dae Won [2 ,3 ]
机构
[1] Ewha Womans Univ, Coll Nat Sci, Dept Life Sci, Seoul 03760, South Korea
[2] Hanyang Univ, Coll Med, Dept Internal Med, Seoul 04763, South Korea
[3] Hanyang Univ, Hanyang Inst Biosci & Biotechnol, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
MASLD; phenotype; cluster; molecular;
D O I
10.3390/diagnostics15030342
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex metabolic disorder with a diverse spectrum. This study aimed to classify patients with MASLD into molecular subtypes based on the underlying pathophysiology. Methods: We performed high-throughput RNA sequencing on 164 liver tissue samples from healthy controls and patients with MASLD. The clustering was based on individual genes or pathways that showed high variation across the samples. Second, the clustering was based on single-sample gene set enrichment analysis. Results: Optimal homogeneity was achieved by dividing the samples into four clusters (one healthy control and three MASLD clusters I-III) based on the top genes or pathways with differences across the samples. No significant differences were observed in waist circumference, blood pressure, glucose, alanine transaminase (ALT), or aspartate transferase (AST) levels between cluster I patients with MASLD and the healthy controls. Cluster I showed the clinical features of lean MASLD. Cluster III of MASLD demonstrated hypertension and a T2DM prevalence of 57.1% and 50.0%, respectively, with a significantly higher fibrosis burden (stage of fibrosis, liver stiffness, and FIB-4 value) than clusters I and II. Cluster III was associated with severe fibrosis and abnormal glucose homeostasis. In MASLD cluster I, the sphingolipid and GPCR pathways were upregulated, whereas the complement and phagocytosis pathways were downregulated. In MASLD cluster II, the cell cycle and NOTCH3 pathways increased, whereas the PI3K and insulin-related pathways decreased. In MASLD cluster III, increased activity occurred in the interleukin-2 and -4 and extracellular matrix pathways, coupled with decreased activity in the serotonin 2A and B pathways. Conclusions: MASLD can be divided into three distinct molecular phenotypes, wherein each is characterized by a specific molecular pathway.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Metabolic dysfunction-associated steatotic liver disease: A silent pandemic
    Samanta, Arghya
    Sen Sarma, Moinak
    WORLD JOURNAL OF HEPATOLOGY, 2024, 16 (04)
  • [22] Postbiotic supplementation for metabolic dysfunction-associated steatotic liver disease
    Savytska, Maryana
    Baka, Olena
    Manzhalii, Elina
    Kyriienko, Dmytro
    Falalyeyeva, Tetyana
    Zhayvoronok, Maksym
    Kovalchuk, Oleksandr
    Deresh, Nataliya
    Grygoriev, Fedir
    Kobyliak, Nazarii
    JOURNAL OF HEPATOLOGY, 2024, 80 : S610 - S611
  • [23] Advances in research on metabolic dysfunction-associated steatotic liver disease
    Wang, Jiawang
    Wang, Zhongyu
    Yu, Yao
    Cheng, Si
    Wu, Jianping
    LIFE SCIENCES, 2025, 362
  • [24] Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease
    Li, Yamei
    Qi, Ping
    Song, Si -Yuan
    Wang, Yiping
    Wang, Hailian
    Cao, Peng
    Liu, Yu 'e
    Wang, Yi
    BIOMEDICINE & PHARMACOTHERAPY, 2024, 174
  • [25] Natural history of metabolic dysfunction-associated steatotic liver disease
    Lekakis, Vasileios
    Papatheodoridis, George, V
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2024, 122 : 3 - 10
  • [26] Mechanism of PANoptosis in metabolic dysfunction-associated steatotic liver disease
    Ni, Keying
    Meng, Lina
    CLINICS AND RESEARCH IN HEPATOLOGY AND GASTROENTEROLOGY, 2024, 48 (07)
  • [27] Vitamin E in Metabolic Dysfunction-Associated Steatotic Liver Disease
    Polyzos, Stergios A.
    Kountouras, Jannis
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2025, 40 (02) : 551 - 552
  • [28] Metabolic Dysfunction-Associated Steatotic Liver Disease: An Overview of Pharmacotherapy
    El Hussein, Mohamed
    Favell, Daniel
    JNP- THE JOURNAL FOR NURSE PRACTITIONERS, 2025, 21 (02):
  • [29] Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease
    Cherubini, Alessandro
    Della Torre, Sara
    Pelusi, Serena
    Valenti, Luca
    TRENDS IN MOLECULAR MEDICINE, 2024, 30 (12) : 1126 - 1136
  • [30] Gut Microbiota and Metabolic Dysfunction-Associated Steatotic Liver Disease
    Scarpellini, Emidio
    Scarcella, Marialaura
    Tack, Jan F.
    Scarlata, Giuseppe Guido Maria
    Zanetti, Michela
    Abenavoli, Ludovico
    ANTIOXIDANTS, 2024, 13 (11)