IBIS primitive groups of almost simple type

被引:0
|
作者
Mastrogiacomo, Fabio [1 ]
Spiga, Pablo [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 5, I-27100 Pavia, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat Pura & Applicata, Via Cozzi 55, I-20126 Milan, Italy
关键词
IBIS; Base size; Irredundant base; Almost simple; Lie group; FINITE CLASSICAL-GROUPS; FIXED-POINT RATIOS; BASE SIZES;
D O I
10.1016/j.jalgebra.2025.01.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite permutation group on Omega. An ordered sequence (omega 1 ... , omega e) of elements of Omega is an irredundant base for G if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. The minimal cardinality of an irredundant base is said to be the base size of G. If all irredundant bases of G have the same cardinality, G is said to be an IBIS group. In this paper, we classify the finite almost simple primitive IBIS groups whose base size is at least 6. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:48 / 103
页数:56
相关论文
共 50 条
  • [41] Torsion units for some almost simple groups
    Joe Gildea
    Czechoslovak Mathematical Journal, 2016, 66 : 561 - 574
  • [42] Torsion units for some almost simple groups
    Gildea, Joe
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 561 - 574
  • [43] 2-signalizers in almost simple groups
    Capdeboscq, Inna
    JOURNAL OF ALGEBRA, 2010, 323 (10) : 2935 - 2942
  • [44] Probabilistic generation of finite almost simple groups
    Fulman, Jason
    Garzoni, Daniele
    Guralnick, Robert M.
    ADVANCES IN MATHEMATICS, 2024, 452
  • [45] Isomorphism Problem for Almost Simple Linear Groups
    Farrokh Shirjian
    Ali Iranmanesh
    Farideh Shafiei
    Mediterranean Journal of Mathematics, 2022, 19
  • [46] DISTINGUISHING LABELING OF THE ACTIONS OF ALMOST SIMPLE GROUPS
    Seress, Akos
    Wong, Tsai-Lien
    Zhu, Xuding
    COMBINATORICA, 2011, 31 (04) : 489 - 506
  • [47] On the automorphism groups of quasiprimitive almost simple graphs
    Fang, XG
    Havas, G
    Praeger, CE
    JOURNAL OF ALGEBRA, 1999, 222 (01) : 271 - 283
  • [48] Complements of the socle in almost simple groups.
    Lucchini, A
    Menegazzo, F
    Morigi, M
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2004, 112 : 141 - 163
  • [49] 3-Signalizers in almost simple groups
    Korchagina, I
    FINITE GROUPS 2003, 2005, : 229 - 246
  • [50] Carter subgroups of finite almost simple groups
    E. P. Vdovin
    Algebra and Logic, 2007, 46 : 90 - 119