Effective repulsive interaction between Janus polymer-grafted nanoparticles adhering to lipid vesicles

被引:0
|
作者
Darling, Jordan F. [1 ]
Sharma, Abash [1 ,2 ]
Zhu, Yu [1 ,3 ]
Spangler, Eric J. [1 ]
Laradji, Mohamed [1 ]
机构
[1] Univ Memphis, Dept Phys & Mat Sci, Memphis, TN 38152 USA
[2] Univ Texas Southwestern Med Ctr, Dept Bioinformat, Dallas, TX 75390 USA
[3] Purdue Univ, Borch Dept Med Chem & Mol Pharmacol, Lafayette, IN 47907 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 03期
基金
美国国家科学基金会;
关键词
MEMBRANE-MEDIATED ATTRACTION; MONTE-CARLO; AGGREGATION; SIMULATION; DYNAMICS; ADHESION; PROTEIN;
D O I
10.1063/5.0249522
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths. Here, we show that the suppression of close-packed clustering and endocytosis can be achieved by the surface modification of the nanoparticles into Janus particles where a moiety of their surface is grafted with polymers under a good solvent condition. The osmotic pressure of the polymer brushes prevents membrane wrapping of the nanoparticles' moieties that are grafted with polymers, thus suppressing their endocytosis. Furthermore, a repulsion between polymer brushes belonging to two nearby nanoparticles destabilizes the dimerization of the nanoparticles over a wide range of values of the polymers' molecular weight and grafting density. This surface modification of nanoparticles should allow for reliable, non-close-packed, and tunable self-assemblies of nanoparticles.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Simulation of the Coronal Dynamics of Polymer-Grafted Nanoparticles
    Miller, Carolyn A.
    Hore, Michael J. A.
    ACS POLYMERS AU, 2022, 2 (03): : 157 - 168
  • [22] Diffusion of polymer-grafted nanoparticles in a homopolymer matrix
    Medidhi, Koteswara Rao
    Padmanabhana, Venkat
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04):
  • [23] Characterizing the shear response of polymer-grafted nanoparticles
    Moussavi, Arman
    Pal, Subhadeep
    Wu, Zhenghao
    Keten, Sinan
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (13):
  • [24] Polymer-grafted metal nanoparticles for fuel applications
    Dubois, Charles
    Lafleur, Pierre G.
    Roy, Cedric
    Brousseau, Patrick
    Stowe, Robert A.
    JOURNAL OF PROPULSION AND POWER, 2007, 23 (04) : 651 - 658
  • [25] Polymer-Grafted Nanoparticles with Precisely Controlled Structures
    Ruan, Yingbo
    Gao, Lei
    Yao, Dongdong
    Zhang, Ke
    Zhang, Baoqing
    Chen, Yongming
    Liu, Chen-Yang
    ACS MACRO LETTERS, 2015, 4 (10): : 1067 - 1071
  • [26] Interfacial properties and applications of polymer-grafted nanoparticles
    Saigal, Trishna
    Alvarez, Nicolas J.
    Duner, Gunnar
    Anna, Shelley L.
    Walker, Lynn M.
    Matyjaszewski, Krzysztof
    Dedinaite, Andra
    Thormann, Esben
    Claesson, Per M.
    Tilton, Robert D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [27] Solvation in Ionic Liquids with Polymer-Grafted Nanoparticles
    Liu, Siqi
    Walton, Mia
    Tarakina, Nadezda, V
    Akcora, Pinar
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (23): : 4843 - 4850
  • [28] What is next in polymer-grafted plasmonic nanoparticles?
    Duan, Hanyi
    Yang, Yiqun
    Zhang, Yan
    Yi, Chenglin
    Nie, Zhihong
    He, Jie
    GIANT, 2020, 4
  • [29] Adsorption of Polymer-Grafted Nanoparticles on Curved Surfaces
    Ozmaian, Aye
    Coalson, Rob D.
    Ozmaian, Masoumeh
    CHEMISTRY-SWITZERLAND, 2021, 3 (01): : 382 - 390
  • [30] Nanoscale Diffusion of Polymer-Grafted Nanoparticles in Entangled Polymer Melts
    Wang, Liquan
    Ma, Jun
    Hong, Wei
    Zhang, Haojing
    Lin, Jiaping
    MACROMOLECULES, 2020, 53 (19) : 8393 - 8399