Effective repulsive interaction between Janus polymer-grafted nanoparticles adhering to lipid vesicles

被引:0
|
作者
Darling, Jordan F. [1 ]
Sharma, Abash [1 ,2 ]
Zhu, Yu [1 ,3 ]
Spangler, Eric J. [1 ]
Laradji, Mohamed [1 ]
机构
[1] Univ Memphis, Dept Phys & Mat Sci, Memphis, TN 38152 USA
[2] Univ Texas Southwestern Med Ctr, Dept Bioinformat, Dallas, TX 75390 USA
[3] Purdue Univ, Borch Dept Med Chem & Mol Pharmacol, Lafayette, IN 47907 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 03期
基金
美国国家科学基金会;
关键词
MEMBRANE-MEDIATED ATTRACTION; MONTE-CARLO; AGGREGATION; SIMULATION; DYNAMICS; ADHESION; PROTEIN;
D O I
10.1063/5.0249522
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths. Here, we show that the suppression of close-packed clustering and endocytosis can be achieved by the surface modification of the nanoparticles into Janus particles where a moiety of their surface is grafted with polymers under a good solvent condition. The osmotic pressure of the polymer brushes prevents membrane wrapping of the nanoparticles' moieties that are grafted with polymers, thus suppressing their endocytosis. Furthermore, a repulsion between polymer brushes belonging to two nearby nanoparticles destabilizes the dimerization of the nanoparticles over a wide range of values of the polymers' molecular weight and grafting density. This surface modification of nanoparticles should allow for reliable, non-close-packed, and tunable self-assemblies of nanoparticles.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Universal Relation for Effective Interaction between Polymer-Grafted Nanoparticles
    Hansoge, Nitin K.
    Gupta, Agam
    White, Heather
    Giuntoli, Andrea
    Keten, Sinan
    MACROMOLECULES, 2021, 54 (07) : 3052 - 3064
  • [2] Interaction between polymer-grafted particles
    Kim, Jaeup U.
    Matsen, Mark W.
    MACROMOLECULES, 2008, 41 (12) : 4435 - 4443
  • [3] REPULSIVE INTERACTIONS AND MECHANICAL STABILITY OF POLYMER-GRAFTED LIPID-MEMBRANES
    NEEDHAM, D
    MCINTOSH, TJ
    LASIC, DD
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1108 (01) : 40 - 48
  • [4] Janus polymer-grafted nanoparticles mimicking membrane repair proteins for the prevention of lipid membrane rupture
    Li, Bin
    Gao, Huimin
    Lu, Zhong-Yuan
    NANOSCALE, 2023, 15 (22) : 9775 - 9782
  • [5] Polymer-Grafted Nanoparticles
    Hore, Michael J. A.
    Korley, LaShanda T. J.
    Kumar, Sanat K.
    Journal of Applied Physics, 2020, 128 (03):
  • [6] Penetration of polymer-grafted nanoparticles through a lipid bilayer
    Liang, Qing
    SOFT MATTER, 2013, 9 (23) : 5594 - 5601
  • [7] Polymer-Grafted Nanoparticles
    Hore, Michael J. A.
    Korley, LaShanda T. J.
    Kumar, Sanat K.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (03)
  • [8] Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles
    Sharma, Abash
    Zhu, Yu
    Spangler, Eric J.
    Hoang, Thang B.
    Laradji, Mohamed
    ACS NANO, 2024, 18 (20) : 12957 - 12969
  • [9] Dynamics of polymer-grafted vesicles in shear flow
    Deng, Zhenyu
    Zhang, Dong
    Zhang, Linxi
    MATERIALS TODAY COMMUNICATIONS, 2015, 3 : 130 - 136
  • [10] Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices
    Koh, Clement
    Grest, Gary S.
    Kumar, Sanat K.
    ACS NANO, 2020, 14 (10) : 13491 - 13499