Probabilistic-sampling-based asynchronous control for semi-Markov jumping neural networks with reaction-diffusion terms

被引:0
|
作者
Wei, Wanying [1 ]
Zhang, Dian [2 ]
Cheng, Jun [1 ]
Cao, Jinde [3 ]
Zhang, Dan [4 ]
Qi, Wenhai [1 ,5 ]
机构
[1] Guangxi Normal Univ, Ctr Appl Math Guangxi, Sch Math & Stat, Guilin 541006, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[4] Zhejiang Univ Technol, Res Ctr Automat & Artificial Intelligence, Hangzhou 310014, Peoples R China
[5] Qufu Normal Univ, Sch Engn, Rizhao 273165, Peoples R China
关键词
Sampled-data control; Randomly sampling interval; Semi-Markov process; Reaction-diffusion terms; EXTENDED DISSIPATIVE SYNCHRONIZATION; SYSTEMS;
D O I
10.1016/j.neunet.2024.107072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed- sampling control law, amore general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable. The jumping of the controller depends on the observation mode, and is asynchronous with the jumping of the system mode. By utilizing the established hidden semi-Markov model and a stochastic analysis approach, some sufficient conditions are obtained to ensure the asymptotically stable of the SMRDNNs. Finally, an example is given to prove the validity and superiority of the conclusion.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Protocol-based control for semi-Markov reaction-diffusion neural networks
    Liu, Na
    Qin, Wenjie
    Cheng, Jun
    Cao, Jinde
    Zhang, Dan
    NEURAL NETWORKS, 2024, 179
  • [2] Adaptive protocol-based control for reaction-diffusion memristive neural networks with semi-Markov switching parameters
    Liu, Na
    Cheng, Jun
    Chen, Yonghong
    Yan, Huaicheng
    Zhang, Dan
    Qi, Wenhai
    INFORMATION SCIENCES, 2024, 677
  • [3] Synchronization of fractional-order reaction-diffusion neural networks with Markov parameter jumping: Asynchronous boundary quantization control
    Liu, Fengyi
    Yang, Yongqing
    Wang, Fei
    Zhang, Lingzhong
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [4] Finite-time synchronization of delayed semi-Markov reaction-diffusion systems: An asynchronous boundary control scheme
    Wei, Angang
    Yao, Zhongyuan
    Zhang, Yu
    Wang, Kaiming
    ISA TRANSACTIONS, 2024, 148 : 326 - 335
  • [5] Asynchronous Boundary Control of Markov Jump Neural Networks With Diffusion Terms
    Han, Xin-Xin
    Wu, Kai-Ning
    Niu, Yugang
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (08) : 4962 - 4971
  • [6] Non-fragile dissipative state estimation for semi-Markov jump inertial neural networks with reaction-diffusion
    Sun, Lin
    Su, Lei
    Wang, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [7] Impulsive Control and Synchronization for Delayed Neural Networks With Reaction-Diffusion Terms
    Hu, Cheng
    Jiang, Haijun
    Teng, Zhidong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01): : 67 - 81
  • [8] Impulsive control for the synchronization of coupled neural networks with reaction-diffusion terms
    Wei, Pu-Chong
    Wang, Jin-Liang
    Huang, Yan-Li
    Xu, Bei-Bei
    Ren, Shun-Yan
    NEUROCOMPUTING, 2016, 207 : 539 - 547
  • [9] NONFRAGILE MEMORY-BASED OUTPUT FEEDBACK CONTROL FOR FUZZY MARKOV JUMP GENERALIZED NEURAL NETWORKS WITH REACTION-DIFFUSION TERMS
    Man, Jingtao
    Song, Xiaona
    Lu, Junwei
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (05): : 1609 - 1628
  • [10] Time-space sampled-data control for semi-Markov reaction-diffusion neural networks: Adopting multiple event-triggered protocols
    Wei, Wanying
    Zhang, Bin
    Cheng, Jun
    Cao, Jinde
    Zhang, Dan
    Yan, Huaicheng
    INFORMATION SCIENCES, 2025, 698