Time-space sampled-data control for semi-Markov reaction-diffusion neural networks: Adopting multiple event-triggered protocols

被引:0
|
作者
Wei, Wanying [1 ]
Zhang, Bin [1 ]
Cheng, Jun [1 ]
Cao, Jinde [2 ]
Zhang, Dan [3 ]
Yan, Huaicheng [4 ]
机构
[1] Guangxi Normal Univ, Ctr Appl Math Guangxi, Sch Math & Stat, Guilin 541006, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[3] Zhejiang Univ Technol, Res Ctr Automat & Artificial Intelligence, Hangzhou 310014, Peoples R China
[4] East China Univ Sci & Technol, Shanghai 200237, Peoples R China
关键词
Multiple event-triggered protocol; Reaction-diffusion neural networks; Semi-Markov process; JUMP SYSTEMS; SYNCHRONIZATION;
D O I
10.1016/j.ins.2024.121779
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on time-space sampled-data control for semi-Markov reaction-diffusion neural networks (SMRDNNs) utilizing event-triggered protocols (ETPs) and a multiasynchronous strategy. To mitigate data confusion caused by significant transmission delays, a novel packet loss scheduling approach is developed, leading to the formation of a unified SMRDNN model. A hidden semi-Markov model is adopted to address asynchronous dynamics among subsystems, ETPs, and the controller. By simultaneously exploring multiple ETPs in the temporal dimension and sampling mechanisms in the spatial dimension, a new space-time sampled-data control method is devised. This strategy effectively reduces communication resource usage while maintaining control performance. Finally, an illustrative example is provided to demonstrate the effectiveness and superiority of the attained theoretical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Pinning event-triggered sampled-data synchronization of coupled reaction-diffusion neural networks
    Zhao, Feng-Liang
    Wang, Zi-Peng
    Qiao, Junfei
    Wu, Huai-Ning
    Huang, Tingwen
    NEUROCOMPUTING, 2024, 599
  • [2] Output synchronization of reaction-diffusion neural networks under random packet losses via event-triggered sampled-data control
    Zhao, Feng-Liang
    Wang, Zi-Peng
    Wu, Huai-Ning
    Wang, Jin-Liang
    Huang, Tingwen
    NEUROCOMPUTING, 2022, 514 : 563 - 573
  • [3] Sampled-data and event-triggered boundary control of a class of reaction-diffusion PDEs with collocated sensing and actuation
    Rathnayake, Bhathiya
    Diagne, Mamadou
    Karafyllis, Iasson
    AUTOMATICA, 2022, 137
  • [4] Sampled-Data Control for Synchronization of Space-Varying Reaction-Diffusion Neural Networks
    Wang, Zi-Peng
    Wu, Huai-Ning
    Wang, Xiao-Hong
    Wang, Lu-Hao
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1146 - 1151
  • [5] Fuzzy Adaptive Event-Triggered Sampled-Data Control for Stabilization of T-S Fuzzy Memristive Neural Networks With Reaction-Diffusion Terms
    Zhang, Ruimei
    Zeng, Deqiang
    Park, Ju H.
    Lam, Hak-Keung
    Zhong, Shouming
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (07) : 1775 - 1785
  • [6] Quasi-synchronization of Hybrid Coupled Reaction-diffusion Neural Networks with Parameter Mismatches via Time-space Sampled-data Control
    Li, Xingru
    Song, Xiaona
    Ning, Zhaoke
    Lu, Junwei
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (09) : 3087 - 3100
  • [7] Quasi-synchronization of Hybrid Coupled Reaction-diffusion Neural Networks with Parameter Mismatches via Time-space Sampled-data Control
    Xingru Li
    Xiaona Song
    Zhaoke Ning
    Junwei Lu
    International Journal of Control, Automation and Systems, 2021, 19 : 3087 - 3100
  • [8] Passivity of Reaction-Diffusion Neural Networks Via Sampled-Data Control
    Wang, Zi-Peng
    Wu, Huai-Ning
    Chen, Wu-Hua
    Wang, Jin-Liang
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2160 - 2165
  • [9] Protocol-based control for semi-Markov reaction-diffusion neural networks
    Liu, Na
    Qin, Wenjie
    Cheng, Jun
    Cao, Jinde
    Zhang, Dan
    NEURAL NETWORKS, 2024, 179
  • [10] Adaptive Event-Triggered Synchronization of Reaction-Diffusion Neural Networks
    Zhang, Ruimei
    Zeng, Deqiang
    Park, Ju H.
    Liu, Yajuan
    Xie, Xiangpeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3723 - 3735