A cross-feature interaction network for 3D human pose estimation

被引:0
|
作者
Peng, Jihua [1 ]
Zhou, Yanghong [3 ]
Mok, P. Y. [1 ,2 ,4 ,5 ]
机构
[1] Hong Kong Polytech Univ, Sch Fash & Text, Hong Kong, Peoples R China
[2] Lab Artificial Intelligence Design, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Res Ctr Text Future Fash, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Res Inst Sports Sci & Technol, Hong Kong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Div Integrat Syst & Design, Hong Kong, Peoples R China
关键词
3D human pose estimation; graph convolutional network (GCN); self-attention; cross-attention;
D O I
10.1016/j.patrec.2025.01.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of estimating 3D human poses from single monocular images is challenging because, unlike video sequences, single images can hardly provide any temporal information for the prediction. Most existing methods attempt to predict 3D poses by modeling the spatial dependencies inherent in the anatomical structure of the human skeleton, yet these methods fail to capture the complex local and global relationships that exist among various joints. To solve this problem, we propose a novel Cross-Feature Interaction Network to effectively model spatial correlations between body joints. Specifically, we exploit graph convolutional networks (GCNs) to learn the local features between neighboring joints and the self-attention structure to learn the global features among all joints. We then design a cross-feature interaction (CFI) module to facilitate cross-feature communications among the three different features, namely the local features, global features, and initial 2D pose features, aggregating them to form enhanced spatial representations of human pose. Furthermore, a novel graph-enhanced module (GraMLP) with parallel GCN and multi-layer perceptron is introduced to inject the skeletal knowledge of the human body into the final representation of 3D pose. Extensive experiments on two datasets (Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) show the superior performance of our method in comparison to existing state-of-the-art (SOTA) models. The code and data are shared at https://github.com/JihuaPeng/CFI-3DHPE
引用
收藏
页码:175 / 181
页数:7
相关论文
共 50 条
  • [21] 3D Hand Pose Estimation from Monocular RGB with Feature Interaction Module
    Guo, Shaoxiang
    Rigall, Eric
    Ju, Yakun
    Dong, Junyu
    IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (08): : 5293 - 5306
  • [22] 3D Hand Pose Estimation From Monocular RGB With Feature Interaction Module
    Guo, Shaoxiang
    Rigall, Eric
    Ju, Yakun
    Dong, Junyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5293 - 5306
  • [23] Relation-aware interaction spatio-temporal network for 3D human pose estimation
    Zhang, Hehao
    Hu, Zhengping
    Bi, Shuai
    Di, Jirui
    Sun, Zhe
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [24] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Liu, Shuangjun
    Sehgal, Naveen
    Ostadabbas, Sarah
    APPLIED INTELLIGENCE, 2022, 52 (12) : 14491 - 14506
  • [25] End-to-End 3D Human Pose Estimation Network With Multi-Layer Feature Fusion
    Cai, Guoci
    Zhang, Changshe
    Xie, Jingxiu
    Pan, Jie
    Li, Chaopeng
    Wu, Yiliang
    IEEE ACCESS, 2024, 12 : 89124 - 89134
  • [26] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Shuangjun Liu
    Naveen Sehgal
    Sarah Ostadabbas
    Applied Intelligence, 2022, 52 : 14491 - 14506
  • [27] Exploring multi-level transformers with feature frame padding network for 3D human pose estimation
    Arthanari, Sathiyamoorthi
    Jeong, Jae Hoon
    Joo, Young Hoon
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [28] On the Robustness of 3D Human Pose Estimation
    Chen, Zerui
    Huang, Yan
    Wang, Liang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5326 - 5332
  • [29] Overview of 3D Human Pose Estimation
    Lin, Jianchu
    Li, Shuang
    Qin, Hong
    Wang, Hongchang
    Cui, Ning
    Jiang, Qian
    Jian, Haifang
    Wang, Gongming
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (03): : 1621 - 1651
  • [30] SlowFastFormer for 3D human pose estimation
    Zhou, Lu
    Chen, Yingying
    Wang, Jinqiao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 243