SpliceSCANNER: An Accurate and Interpretable Deep Learning-Based Method for Splice Site Prediction

被引:0
|
作者
Wang, Rongxing [1 ]
Xu, Junwei [1 ]
Huang, Xiaodi [1 ]
Qi, Wangjing [1 ]
Zhang, Yanju [1 ,2 ,3 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541004, Guangxi, Peoples R China
[2] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
[3] Huaqiao Univ, Xiamen Key Lab CVPR, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Splice site prediction; CNN; Attention mechanism; Interpretation;
D O I
10.1007/978-981-99-4749-2_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of splice sites is significant to the delineation of gene structure and the understanding of complicated alternative mechanisms underlying gene transcriptional regulation. Currently, most of the existing approaches predict splice sites utilizing deep learning-based strategies. However, they may fail to assign high weights to important segments of sequences to capture distinctive features. Moreover, they often only apply neural network as a 'black box', arising criticism for scarce reasoning behind their decision-making. To address these issues, we present a novel method, SpliceSCANNER, to predict canonical splice sites via integration of attention mechanism with convolutional neural network (CNN). Furthermore, we adopted gradient-weighted class activation mapping (Grad-CAM) to interpret the results derived from models. We trained ten models for donor and acceptor on five species. Experiments demonstrate that SpliceSCANNER outperforms state-of-the-art methods on most of the datasets. Taking human data for instance, it achieves accuracy of 96.36% and 95.77% for donor and acceptor respectively. Finally, the cross-organism validation results illustrate that it has outstanding generalizability, indicating its powerful ability to annotate canonical splice sites for poorly studied species. We anticipate that it can mine potential splicing patterns and bring new advancements to the bioinformatics community. SpliceSCANNER is freely available as a web server at http://www.bioinfo-zhanglab.com/SpliceSCANNER/.
引用
收藏
页码:447 / 459
页数:13
相关论文
共 50 条
  • [31] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [32] Deep learning-based prediction of TFBSs in plants
    Shen, Wei
    Pan, Jian
    Wang, Guanjie
    Li, Xiaozheng
    TRENDS IN PLANT SCIENCE, 2021, 26 (12) : 1301 - 1302
  • [33] Deep learning-based location prediction in VANET
    Rezazadeh, Nafiseh
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1574 - 1587
  • [34] Deep learning-based prediction of proteincarbohydrate interfaces
    Gheeraert, A.
    Lin, R. Leon Foun
    Bailly, T.
    Ren, Y.
    Vander Meersche, Y.
    Cretin, G.
    Gelly, J.
    Galochkina, T.
    FEBS OPEN BIO, 2024, 14 : 94 - 94
  • [35] Deep Learning-Based Wave Overtopping Prediction
    Alvarellos, Alberto
    Figuero, Andres
    Rodriguez-Yanez, Santiago
    Sande, Jose
    Pena, Enrique
    Rosa-Santos, Paulo
    Rabunal, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [36] A Survey of Deep Learning-Based Lightning Prediction
    Wang, Xupeng
    Hu, Keyong
    Wu, Yongling
    Zhou, Wei
    ATMOSPHERE, 2023, 14 (11)
  • [37] Deep learning-based prediction of autoimmune diseases
    Yang, Donghong
    Peng, Xin
    Zheng, Senlin
    Peng, Shenglan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction
    Tubiana, Jerome
    Schneidman-Duhovny, Dina
    Wolfson, Haim J.
    NATURE METHODS, 2022, 19 (06) : 730 - +
  • [39] Deep Learning-Based Weather Prediction: A Survey
    Ren, Xiaoli
    Li, Xiaoyong
    Ren, Kaijun
    Song, Junqiang
    Xu, Zichen
    Deng, Kefeng
    Wang, Xiang
    BIG DATA RESEARCH, 2021, 23
  • [40] ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction
    Jérôme Tubiana
    Dina Schneidman-Duhovny
    Haim J. Wolfson
    Nature Methods, 2022, 19 (6) : 730 - 739