Solutions of Riesz-Caputo fractional derivative problems involving anti-periodic boundary conditions

被引:1
|
作者
Edward, Jenisha Linnet [1 ]
Chanda, Ankush [1 ]
Nashine, Hemant Kumar [2 ,3 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, India
[2] VIT Bhopal Univ, Sch Adv Sci & Languages, Math Div, Sehore 466114, Madhya Pradesh, India
[3] Univ Johannesburg, Dept Math & Appl Math, Kingsway Campus, ZA-2006 Auckland Pk, South Africa
关键词
Fixed point theorems; fractional differential equations; Riesz-Caputo derivative; anti-periodic boundary conditions; DIFFERENTIAL-EQUATIONS; SPACE;
D O I
10.2298/FIL2417177E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the investigation concerning the existence and uniqueness of anti-periodic boundary value solutions for a kind of Riesz-Caputo fractional differential equations. The equation is as follows (RC) (0) D (zeta) (l) Pi(tau) + T tau, Pi(tau), (RC) D-0(l)eta Pi ( tau )= 0 , tau is an element of J := [0, l ] , a(1) Pi (0) + b(1) Pi ( l ) = 0, a(2) Pi ' (0) + b2 Pi ' ( l ) = 0, a(3)Pi '' (0) + b(3) Pi '' ( l ) = 0, where 2 < zeta <= 3 and, 1 < eta <= 2, (RC) (0) D kappa l is the Riesz-Caputo fractional derivative of order kappa is an element of {zeta, eta}, T : J x R x R -> R is a continuous function and a i , b(i) are non-negative constants with a(i) > b(i) , i = 1, 2, 3. Uniqueness is demonstrated using Banach contraction principle, and existence is demonstrated employing the fixed point theorems of Schaefer and Krasnoselskii. Our results are supported by suitable numerical illustrations.
引用
收藏
页码:6177 / 6192
页数:16
相关论文
共 50 条
  • [31] STUDY OF A COUPLED SYSTEM WITH ANTI-PERIODIC BOUNDARY CONDITIONS UNDER PIECEWISE CAPUTO-FABRIZIO DERIVATIVE
    Patanarapeelert, Nichaphat
    Asma, Asma
    Ali, Arshad
    Shah, Kamal
    Abdeljawad, Thabet
    Sitthiwirattham, Thanin
    THERMAL SCIENCE, 2023, 27 (Special Issue 1): : S287 - S300
  • [32] Anti-periodic boundary value problems of fractional differential equations with the Riemann-Liouville fractional derivative
    Chai, Guoqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [33] On Fractional Differential Equations with Riesz-Caputo Derivative and Non-Instantaneous Impulses
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 109 - 132
  • [34] Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
    Blaszczyk, Tomasz
    Bekus, Krzysztof
    Szajek, Krzysztof
    Sumelka, Wojciech
    MECCANICA, 2022, 57 (04) : 861 - 870
  • [35] Anti-periodic boundary value problems of fractional differential equations with the Riemann-Liouville fractional derivative
    Guoqing Chai
    Advances in Difference Equations, 2013
  • [36] Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
    Tomasz Blaszczyk
    Krzysztof Bekus
    Krzysztof Szajek
    Wojciech Sumelka
    Meccanica, 2022, 57 : 861 - 870
  • [37] Existence of solutions for anti-periodic boundary value problems
    Wang, Weibing
    Shen, Hanhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) : 598 - 605
  • [38] Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions
    Zhang, Lihong
    Wang, Guotao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (07) : 1 - 11
  • [39] Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative
    Ahmad, Bashir
    Nieto, Juan J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) : 451 - 462
  • [40] Existence of solutions for fractional boundary value problems with Riesz space derivative and nonlocal conditions
    Toprakseven, Suayip
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 701 - 715