Micro Transfer Learning Mechanism for Cross-Domain Equipment RUL Prediction

被引:0
|
作者
Xiang, Sheng [1 ,2 ]
Li, Penghua [1 ,2 ]
Luo, Jun [3 ]
Qin, Yi [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Intelligent Comp Big Data, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[3] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
RUL prediction; differentiated distribution; transfer learning; adversarial network; equipment;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transfer learning generally addresses to reduce the distribution distance between source-domain and target-domain. However, it is unreasonable to use a distribution to represent the life-cycle signals as they are always time-varying, and the improper assumption affects the efficacy of transfer remaining useful life (RUL) prediction. To fill this gap, this research proposes a micro transfer learning mechanism for multiple differentiated distributions, and a transfer RUL prediction model is constructed. First, a multi-cellular long short-term memory (MCLSTM) neural network is applied to obtain multiple differentiated distributions of the monitoring data at some point. Then the domain adversarial mechanism is used to achieve the knowledge transfer of multiple differentiated distributions at the cell level. Furthermore, an active screen mechanism is designed for weighting the domain discrimination losses of multiple differentiated distributions. Through the transfer RUL prediction experiments on aero-engines and actual wind turbine gearboxes, the superiority of this model over the advanced transfer prediction models is verified. Note to Practitioners-The work is motivated by the accuracy reduction problem caused by the time-varying characteristics of life-cycle data in the cross domain equipment RUL prediction scenario, where a fixed single distribution is difficult to cover the full life-cycle data. This article proposes a micro transfer learning mechanism containing multiple differentiated distributions, and a novel transfer RUL prediction model based on the mechanism is constructed for solving the problem caused by the time-varying characteristics of life-cycle data. There are four steps for implementing this method in practice: 1) collecting the full-life cycle signals of historical equipment; 2) modeling the degradation curves of equipment by MCLSTM; 3) solving the cross domain RUL prediction by narrowing the distributions of degradation curves by the micro transfer learning mechanism; and 4) making prognostics for new equipment. The novelty is that the proposed mechanism can self-adaptively align multiple differentiated subspaces of the source domain and the target domain, that is, it can adaptively extract the domain invariant features over time. As a result, the proposed method has two main advantages: 1) capable of characterizing the degradation processes of different equipment; and 2) superior prognostic results on cross domain RUL prediction.
引用
收藏
页码:1460 / 1470
页数:11
相关论文
共 50 条
  • [21] Cross-Domain Latent Modulation for Variational Transfer Learning
    Hou, Jinyong
    Deng, Jeremiah D.
    Cranefield, Stephen
    Ding, Xuejie
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3148 - 3157
  • [22] A transfer learning approach to cross-domain authorship attribution
    Barlas, Georgios
    Stamatatos, Efstathios
    EVOLVING SYSTEMS, 2021, 12 (03) : 625 - 643
  • [23] Stratified Transfer Learning for Cross-domain Activity Recognition
    Wang, Jindong
    Chen, Yiqiang
    Hu, Lisha
    Peng, Xiaohui
    Yu, Philip S.
    2018 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2018, : 115 - 124
  • [24] A transfer learning approach to cross-domain authorship attribution
    Georgios Barlas
    Efstathios Stamatatos
    Evolving Systems, 2021, 12 : 625 - 643
  • [25] Ontology-Driven Cross-Domain Transfer Learning
    Fumagalli, Mattia
    Bella, Gabor
    Conti, Samuele
    Giunchiglia, Fausto
    FORMAL ONTOLOGY IN INFORMATION SYSTEMS, FOIS 2020, 2020, 330 : 249 - 263
  • [26] Dyadic Transfer Learning for Cross-Domain Image Classification
    Wang, Hua
    Nie, Feiping
    Huang, Heng
    Ding, Chris
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 551 - 556
  • [27] Cross-domain activity recognition via transfer learning
    Hu, Derek Hao
    Zheng, Vincent Wenchen
    Yang, Qiang
    PERVASIVE AND MOBILE COMPUTING, 2011, 7 (03) : 344 - 358
  • [28] Damage detection using in-domain and cross-domain transfer learning
    Zaharah A. Bukhsh
    Nils Jansen
    Aaqib Saeed
    Neural Computing and Applications, 2021, 33 : 16921 - 16936
  • [29] Damage detection using in-domain and cross-domain transfer learning
    Bukhsh, Zaharah A.
    Jansen, Nils
    Saeed, Aaqib
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (24): : 16921 - 16936
  • [30] Cross-Domain Sentiment Classification Based on Representation Learning and Transfer Learning
    Liao X.
    Wu X.
    Gui L.
    Huang J.
    Chen G.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (01): : 37 - 46