Second-order skewness of the maximum likelihood estimators in symmetric nonlinear regressions

被引:0
|
作者
Lemonte, Artur J. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estat, Natal, Brazil
关键词
Asymptotic expansion; first-order asymptotic theory; Monte Carlo simulation; normal regression; Student-<italic>t</italic> regression; ASYMPTOTIC SKEWNESS;
D O I
10.1080/02331888.2025.2456815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The symmetric nonlinear regression model encompasses a wide class of models like the nonlinear normal, Student-t, and power exponential regression models, among others. We provide a simple closed-form expression, in matrix form, for the second-order skewness of the maximum likelihood estimators of the regression parameters, as well as a simple expression for the second-order skewness of the maximum likelihood estimator of the scale parameter in the symmetric nonlinear regression model. The matrix formula involves simple operations on matrices and vectors, which is quite suitable for computer implementation. We present Monte Carlo simulations to verify the behaviour of the second-order skewness in small-sized samples in this class of regression models. Real data applications are also considered to show the practical importance of our results.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Fitting second-order parametric distributions to data using maximum likelihood estimation
    Burmaster, DE
    Thompson, KM
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 1998, 4 (02): : 319 - 339
  • [22] Second-order refinement of empirical likelihood ratio tests of nonlinear restrictions
    Ma, Jun
    ECONOMETRICS JOURNAL, 2017, 20 (01): : 139 - 148
  • [23] Second-order semi-blind adaptive interference cancellation: Maximum likelihood solution
    Abramovich, YI
    Kuzminskiy, AM
    2004 IEEE 5TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2004, : 194 - 198
  • [24] Maximum likelihood signal classification using second-order blind deconvolution probability model
    Gupta, Maya R.
    Anderson, Hyrum S.
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 788 - 791
  • [25] Second-order approximation for adaptive regression estimators
    Linton, O
    Xiao, ZJ
    ECONOMETRIC THEORY, 2001, 17 (05) : 984 - 1024
  • [26] Second-order symmetric Lorentzian manifolds
    Senovilla, Jose M. M.
    CENTURY OF RELATIVITY PHYSICS, 2006, 841 : 370 - 377
  • [27] Nondifferentiable second-order symmetric duality
    Ahmad, I
    Husain, Z
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2005, 22 (01) : 19 - 31
  • [28] 2ND ORDER EFFICIENCY OF MAXIMUM LIKELIHOOD ESTIMATORS
    GHOSH, JK
    SUBRAMANYAM, K
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1974, 36 (OCT): : 325 - 358
  • [29] Second-order nonlinear optical properties of highly symmetric chiral thin films
    Verbiest, T
    Van Elshocht, S
    Persoons, A
    Nuckolls, C
    Phillips, KE
    Katz, TJ
    LANGMUIR, 2001, 17 (16) : 4685 - 4687
  • [30] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Roberto Andreani
    Ellen H. Fukuda
    Gabriel Haeser
    Daiana O. Santos
    Leonardo D. Secchin
    Journal of Optimization Theory and Applications, 2024, 200 : 1 - 33