Second-order skewness of the maximum likelihood estimators in symmetric nonlinear regressions

被引:0
|
作者
Lemonte, Artur J. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estat, Natal, Brazil
关键词
Asymptotic expansion; first-order asymptotic theory; Monte Carlo simulation; normal regression; Student-<italic>t</italic> regression; ASYMPTOTIC SKEWNESS;
D O I
10.1080/02331888.2025.2456815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The symmetric nonlinear regression model encompasses a wide class of models like the nonlinear normal, Student-t, and power exponential regression models, among others. We provide a simple closed-form expression, in matrix form, for the second-order skewness of the maximum likelihood estimators of the regression parameters, as well as a simple expression for the second-order skewness of the maximum likelihood estimator of the scale parameter in the symmetric nonlinear regression model. The matrix formula involves simple operations on matrices and vectors, which is quite suitable for computer implementation. We present Monte Carlo simulations to verify the behaviour of the second-order skewness in small-sized samples in this class of regression models. Real data applications are also considered to show the practical importance of our results.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Asymptotic skewness and the distribution of maximum likelihood estimators
    Bowman, KO
    Shenton, LR
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (11) : 2743 - 2760
  • [2] Second-order asymptotic expressions for the covariance matrix of maximum likelihood estimators in dispersion models
    Rocha, Andrea V.
    Simas, Alexandre B.
    Cordeiro, Gauss M.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 718 - 725
  • [3] Skewness of maximum likelihood estimators in dispersion models
    Simas, Alexandre B.
    Cordeiro, Gauss M.
    Rocha, Andrea V.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 2111 - 2121
  • [4] A matrix formula for the skewness of maximum likelihood estimators
    Patriota, Alexandre G.
    Cordeiro, Gauss M.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (04) : 529 - 537
  • [5] Corrected maximum likelihood estimators in heteroscedastic symmetric nonlinear models
    Cysneiros, F. J. A.
    Cordeiro, G. M.
    Cysneiros, A. H. M. A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (04) : 451 - 461
  • [6] Skewness of Maximum Likelihood Estimators in the Weibull Censored Data
    Magalhaes, Tiago M.
    Gallardo, Diego, I
    Gomez, Hector W.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [7] Penalized maximum likelihood and semiparametric second-order efficiency
    Dalalyan, AS
    Golubev, GK
    Tsybakov, AB
    ANNALS OF STATISTICS, 2006, 34 (01): : 169 - 201
  • [8] The asymptotic variance and skewness of maximum likelihood estimators using Maple
    Bowman, KO
    Shenton, LR
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (12) : 975 - 986
  • [9] Second-order properties of intraclass correlation estimators for a symmetric normal distribution
    Pal, N
    Lim, WK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (01): : 163 - 172
  • [10] The second-order bias and mean squared error of nonlinear estimators
    Rilstone, Paul
    Srivastava, V.K.
    Ullah, Aman
    Elsevier Ltd (75):