A Hybrid Data-Driven Approach for Autonomous Fault Detection and Prognosis of a Spacecraft Reaction Wheel

被引:0
|
作者
Howard, Andrew B. [1 ]
Ayoubit, Mohammad [2 ]
机构
[1] Maxar Space Syst, Dynam & Control Anal Grp, Palo Alto, CA 94303 USA
[2] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a hybrid data-driven approach for predicting the remaining useful life (RUL) of a spacecraft reaction wheel (RW). Our method combines a physics-informed model with a data-driven regression and machine learning technique known as the sparse identification of nonlinear dynamics (SINDy). This approach is used for fault detection and RUL prediction of the RW. For fault detection, we predict the states and health index (HI) parameters of the RW, with the coefficients of output torque and viscous friction selected as the HI parameters. To estimate the RUL, we analyze the trends of these HI parameters over time, predicting when the failure threshold will be crossed. We demonstrate that the proposed method is more effective and suitable for autonomous onboard applications compared to existing methods, such as Long Short-Term Memory (LSTM) recurrent neural networks.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach
    Zhang, Zhiteng
    Zhang, Xiaofang
    Yan, Tianhong
    Gao, Shuang
    Yu, Ze
    MACHINES, 2023, 11 (05)
  • [42] Data-driven approach to observer-based incipient fault detection in transformers
    Leal-Leal, I. E.
    Alcorta-Garcia, E.
    Perez-Rojas, C.
    Garcia-Martinez, S.
    2016 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXPOSITION-LATIN AMERICA (PES T&D-LA), 2016,
  • [43] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [44] Data-Driven Abnormal Behavior Detection for Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    2017 IEEE VEHICULAR NETWORKING CONFERENCE (VNC), 2017, : 69 - 72
  • [45] Online data-driven anomaly detection in autonomous robots
    Eliahu Khalastchi
    Meir Kalech
    Gal A. Kaminka
    Raz Lin
    Knowledge and Information Systems, 2015, 43 : 657 - 688
  • [46] Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach
    Wang, Ting
    Zhang, Chunyan
    Hao, Zhiguo
    Monti, Antonello
    Ponci, Ferdinanda
    APPLIED ENERGY, 2023, 336
  • [47] Predictive Control of Autonomous Greenhouses: A Data-Driven Approach
    Kerkhof, L.
    Keviczky, T.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1229 - 1235
  • [48] A Data-Driven Approach for Performance Evaluation of Autonomous eVTOLs
    Sarkar, Mrinmoy
    Yan, Xuyang
    Gebru, Biniam
    Nuhu, Abdul-Rauf
    Gupta, Kishor Datta
    Vamvoudakis, Kyriakos G.
    Homaifar, Abdollah
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (02) : 3626 - 3641
  • [49] MAVERIC: A Data-Driven Approach to Personalized Autonomous Driving
    Schrum, Mariah L.
    Sumner, Emily
    Gombolay, Matthew C.
    Best, Andrew
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 1952 - 1965
  • [50] Fault detection in water supply systems using hybrid (theory and data-driven) modelling
    Izquierdo, J.
    Lopez, P. A.
    Martinez, F. J.
    Perez, R.
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) : 341 - 350