On nilpotent homoderivations in semi-prime rings

被引:0
|
作者
Taoufiq, Lahcen [1 ]
Belkadi, Said [1 ]
机构
[1] IBN ZOHR Univ, Math Comp Sci & Applicat Lab, ENSA, Agadir, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Homoderivation; nilpotent homoderivation; Leibniz formula; iterates of homoderivations; prime and semi-prime ring;
D O I
10.5269/bspm.63913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative ring and let s >= 1 be a fixed integer. An additive map h on R is called a homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y) holds for all x, y is an element of R. In [4,5,6], Chung and Luh proved several results about the nilpotency of derivations in semi-prime rings. Similarly, the main objective of this paper is to provide a complete study about the nilpotency of homoderivations with nilpotency 's' in semi-prime rings.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] SEMI-PRIME RINGS WHOSE HOMOMORPHIC IMAGES ARE SERIAL
    LEVY, LS
    SMITH, PF
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (03): : 691 - 695
  • [32] A CHARACTERIZATION OF SEMI-PRIME IDEALS IN NEAR-RINGS
    GROENEWALD, NJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 194 - 196
  • [33] Permuting Tri-Derivations in Prime and Semi-Prime Gamma Rings
    Ozden, Duran
    Ozturk, Mehmet Ali
    Jun, Young Bae
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 153 - 167
  • [34] SOME THEOREMS ON SEMI-PRIME NON-ASSOCIATIVE RINGS
    BOERS, AH
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1989, 92 (01): : 21 - 23
  • [35] Modules over the generalized centroid of semi-prime gamma rings
    Ozturk, Mehmet Ali
    Yazarli, Hasret
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (02) : 203 - 213
  • [36] On multiplicative centrally-extended maps on semi-prime rings
    Tammam EL-Sayiad, M. S.
    Ageeb, A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2022, 16 (01): : 1151 - 1156
  • [37] SEMI-PRIME MODULES
    FELLER, EH
    SWOKOWSK.EW
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (04): : 823 - &
  • [38] LIE STRUCTURE IN SEMI-PRIME RINGS WITH INVOLUTION .2.
    LANSKI, C
    COMMUNICATIONS IN ALGEBRA, 1978, 6 (17) : 1755 - 1775
  • [39] COMMUTATORS HAVING IDEMPOTENT VALUES WITH AUTOMORPHISMS IN SEMI-PRIME RINGS
    Ashraf, Mohammad
    Raz, Mohd Arif
    Pary, Sajad Ahmad
    MATHEMATICAL REPORTS, 2018, 20 (01): : 51 - 57
  • [40] SEMI-PRIME BERNSTEIN ALGEBRAS
    HENTZEL, IR
    PERESI, LA
    ARCHIV DER MATHEMATIK, 1989, 52 (06) : 539 - 543