Dry-Pressed Fabrication of Lithium-Ion Electrodes Over 500 μm Thick

被引:0
|
作者
Hu, Kedi [2 ]
Fu, William [2 ]
West, Alan C. [1 ]
Steingart, Daniel A. [1 ]
机构
[1] Columbia Univ, Columbia Electrochem Energy Ctr, Chem Engn Earth & Environm Engn, 500 West 120th St, New York, NY 10027 USA
[2] Columbia Univ, Chem Engn, 500 West 120th St, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Electrochemistry; Energy conversion; Lithium-ion; Thick electrodes; Modeling; Simulations; BATTERY ELECTRODES; POROUS-ELECTRODES; TORTUOSITY; OPTIMIZATION; DISCHARGE; DESIGN; ENERGY; CHARGE;
D O I
10.1002/batt.202400301
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In stationary storage, thick electrodes can minimize inactive material components to increase energy density and decrease cost, but they face challenges in performance and manufacturability. This work discusses a method to fabricate thick-format lithium-ion electrodes and a model to explore transport constraints for functional thick electrodes. Thick lithium iron phosphate (LFP) electrodes were fabricated using a solvent-free pressing process that adopts methods from alkaline electrode manufacturing for low-cost scale-up. LFP electrodes with thicknesses up to 1 mm and capacities up to similar to 15 mAh/cm(2) exhibited good rate performance (similar to 98 % utilization at C/10, similar to 95 % at C/5, similar to 76 % at C/2). A physics-based LFP half-cell model was developed to aid in characterizing transport within these thick electrodes, revealing opportunities to further improve performance by decreasing tortuosity.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Simple Fabrication of Interconnected CuO Nanotube Electrodes for High-Performance Lithium-Ion Batteries
    Lee, Jung-In
    Choi, Sinho
    Park, Soojin
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (07) : 1377 - 1380
  • [42] Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries
    Ke, Fu-Sheng
    Huang, Ling
    Wei, Hong-Bing
    Cai, Jin-Shu
    Fan, Xiao-Yong
    Yang, Fang-Zu
    Sun, Shi-Gang
    JOURNAL OF POWER SOURCES, 2007, 170 (02) : 450 - 455
  • [43] Fabrication of Lithium-ion Microarray Battery by Electrophoresis
    Kotobuki, Masashi
    Sugiura, Takashi
    Sugaya, Jun-ichi
    Munakata, Hirokazu
    Kanamura, Kiyoshi
    ELECTROCHEMISTRY, 2010, 78 (04) : 273 - 275
  • [44] Using Lithium-ion Differential Thermal Analysis to Probe Tortuosity of Negative Electrodes in Lithium-Ion Cells
    Bauer, Michael K. G.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
  • [45] Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene
    Kirsch, Dylan J.
    Lacey, Steven D.
    Kuang, Yudi
    Pastel, Glenn
    Xie, Hua
    Connell, John W.
    Lin, Yi
    Hu, Liangbing
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 2990 - 2997
  • [46] Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes
    Quilty, Calvin D.
    Wu, Daren
    Li, Wenzao
    Bock, David C.
    Wang, Lei
    Housel, Lisa M.
    Abraham, Alyson
    Takeuchi, Kenneth J.
    Marschilok, Amy C.
    Takeuchi, Esther S.
    CHEMICAL REVIEWS, 2023, 123 (04) : 1327 - 1363
  • [47] Lithium redistribution around the crack tip of lithium-ion battery electrodes
    Yang, Le
    Chen, Hao-Sen
    Jiang, Hanqing
    Song, Wei-Li
    Fang, Daining
    SCRIPTA MATERIALIA, 2019, 167 : 11 - 15
  • [48] VSe2-ySy electrodes in lithium and lithium-ion cells
    Guzman, R
    Lavela, P
    Morales, J
    Tirado, JL
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (10) : 1207 - 1211
  • [49] VSe2−ySy electrodes in lithium and lithium-ion cells
    R. GUZMA´N
    P. LAVELA
    J. MORALES
    J. L. TIRADO
    Journal of Applied Electrochemistry, 1997, 27 : 1207 - 1211
  • [50] Influence of external on silicon electrodes in lithium-ion cells
    Goettlinger, Mara
    Daubinger, Philip
    Stracke, Werner
    Hartmann, Sarah
    Giffin, Guinevere A.
    ELECTROCHIMICA ACTA, 2022, 419