Role of customized scan strategies and dwell time on microstructure and properties of additively manufactured 316L stainless steel

被引:1
|
作者
Pathak, Puskar [1 ,2 ,3 ]
Majkic, Goran [1 ,2 ,3 ]
Selvamanickam, Venkat [1 ,2 ,3 ]
机构
[1] Univ Houston, Adv Mfg Inst, Houston, TX 77004 USA
[2] Univ Houston, Dept Mech Engn, Houston, TX 77004 USA
[3] Univ Houston, Texas Ctr Superconduct, Houston, TX 77004 USA
来源
关键词
Additive manufacturing; Scan strategy; Dwell time; LENS-DED; 316L stainless steel; DIRECTED ENERGY DEPOSITION;
D O I
10.36922/msam.2676
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct energy deposition (DED)-based additive manufacturing facilitates fabrication of medium-to-large functional parts. This study assesses the role of varying scan strategies and dwell time between each layer to control the cooling rate of 316L stainless steel produced by the laser-engineered net shaping-DED method. Customized print patterns were designed, keeping other optimized print parameters constant to obtain printed parts with better dimensional tolerance. The parts, which were >99% dense, were fabricated in a controlled argon environment. A heterogeneous microstructure consisting of a cellular columnar and equiaxed substructure was obtained. Two-dimensional X-ray diffraction revealed the presence of a single-phase gamma-austenitic FCC phase. A refined microstructure with less elemental segregation was noticed with an increase in dwell time between the print layers. Internal defect analysis using X-ray micro-computed tomography revealed low lack-of-fusion voids along the build direction without any micro-cracks, which is attributed to higher cooling rates between subsequent print layers. As demonstrated in a mechanical performance evaluation of tensile and micro-hardness properties, better performance can be achieved by controlling the cooling rate and customizing deposition patterns.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Heterogeneous slip localization in an additively manufactured 316L stainless steel
    Bean, C.
    Wang, F.
    Charpagne, M. A.
    Villechaise, P.
    Valle, V.
    Agnew, S. R.
    Gianola, D. S.
    Pollock, T. M.
    Stinville, J. C.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 159
  • [22] Structural representation of additively manufactured 316L austenitic stainless steel
    Bronkhorst, C. A.
    Mayeur, J. R.
    Livescu, V.
    Pokharel, R.
    Brown, D. W.
    Gray, G. T., III
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 118 : 70 - 86
  • [23] Effects of Heat Treatment on Additively Manufactured 316L Stainless Steel
    Burdova, Karolina
    Jirkova, Hana
    Kucerova, Ludmila
    Zetkova, Ivana
    Mach, Josef
    MANUFACTURING TECHNOLOGY, 2022, 22 (03): : 261 - 266
  • [24] Mechanical and Corrosion Performance of Additively Manufactured Stainless Steel 316L
    Zharkynbekova, Guldariya
    Yuldasheva, Dilnaz
    Ospanov, Alan
    Talamona, Didier
    Perveen, Asma
    2024 15TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES, ICMIMT 2024, 2024, : 154 - 158
  • [25] Strengthening the additively manufactured 316L stainless steel by adding Al
    Xu, Kang
    Yu, Mingxiong
    Huang, Sen
    Tian, Hongsheng
    Mao, Lizhong
    Liu, Xinjian
    Zheng, Danfeng
    Gao, Hongwei
    Zhao, Dengbiao
    Li, Bochuan
    MATERIALS LETTERS, 2024, 357
  • [26] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [27] Fatigue strength of additively manufactured 316L austenitic stainless steel
    Kumar, Punit
    Jayaraj, R.
    Suryawanshi, J.
    Satwik, U. R.
    McKinnell, J.
    Ramamurty, U.
    ACTA MATERIALIA, 2020, 199 (199) : 225 - 239
  • [28] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378
  • [29] Predicting ductile tearing of additively manufactured 316L stainless steel
    Neilsen, Michael K.
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 218 (1-2) : 195 - 207
  • [30] Predicting ductile tearing of additively manufactured 316L stainless steel
    Michael K. Neilsen
    International Journal of Fracture, 2019, 218 : 195 - 207