Subjective Logic-based Decentralized Federated Learning for Non-IID Data

被引:0
|
作者
Sundar, Agnideven Palanisamy [1 ]
Li, Feng [1 ]
Zou, Xukai [1 ]
Gao, Tianchong [2 ,3 ]
机构
[1] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[2] Southeast Univ, Sch Cyber Sci & Engn, Nanjing, Jiangsu, Peoples R China
[3] Southeast Univ, Frontiers Sci Ctr Mobile Informat Commun & Secur, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Federated Learning; Subjective Logic; Distributed Systems; Generative Adversarial Networks; Non-IID Data;
D O I
10.1145/3664476.3664517
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing Federated Learning (FL) methods are highly influenced by the training data distribution. In the single global model FL systems, users with highly non-IID data do not improve the global model, and neither does the global model work well on their local data distribution. Even with the clustering-based FL approaches, not all participants get clustered adequately enough for the models to fulfill their local demands. In this work, we design a modified subjective logic-based FL system utilizing the distribution-based similarity among users. Each participant has complete control over their own aggregated model, with handpicked contributions from other participants. The existing clustered model only satisfies a subset of clients, while our individual aggregated models satisfy all the clients. We design a decentralized FL approach, which functions without a trusted central server; the communication and computation overhead is distributed among the clients. We also develop a layer-wise secret-sharing scheme to amplify privacy. We experimentally show that our approach improves the performance of each participant's aggregated model on their local distribution over the existing single global model and clustering-based approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [42] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [43] Contribution- and Participation-Based Federated Learning on Non-IID Data
    Hu, Fei
    Zhou, Wuneng
    Liao, Kaili
    Li, Hongliang
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (04) : 35 - 43
  • [44] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [45] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49
  • [46] Hierarchical Federated Learning with Adaptive Clustering on Non-IID Data
    Tian, Yuqing
    Zhang, Zhaoyang
    Yang, Zhaohui
    Jin, Richeng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 627 - 632
  • [47] Graph-Attention-Based Decentralized Edge Learning for Non-IID Data
    Tian, Zhuojun
    Zhang, Zhaoyang
    Jin, Richeng
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 110 - 115
  • [48] Privacy-Enhanced Federated Learning for Non-IID Data
    Tan, Qingjie
    Wu, Shuhui
    Tao, Yuanhong
    MATHEMATICS, 2023, 11 (19)
  • [49] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [50] Federated Learning-Based IoT Intrusion Detection on Non-IID Data
    Huang, Wenxuan
    Tiropanis, Thanassis
    Konstantinidis, George
    INTERNET OF THINGS, GIOTS 2022, 2022, 13533 : 326 - 337