Accelerated prediction of lattice thermal conductivity of Zirconium and its alloys: A machine learning potential method

被引:0
|
作者
Yang, Fan [1 ]
Wang, Di [1 ]
Si, Jiaxuan [1 ,2 ]
Yu, Jianqiao [1 ]
Xie, Zhen [1 ]
Wu, Xiaoyong [3 ]
Wang, Yuexia [1 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Nucl Power Inst China, Sub Inst 1, Chengdu 610005, Peoples R China
[3] Nucl Power Inst China, Sub Inst 4, Chengdu 610005, Peoples R China
基金
中国国家自然科学基金;
关键词
Zr alloy; Lattice thermal conductivity; Machine learning potential; GRADIENT APPROXIMATION;
D O I
10.1016/j.jnucmat.2024.155603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zirconium alloy coating is an important direction for the modification of nuclear cladding materials. Thermal conductivity is a critical property of cladding materials. With extensively studying phonon-electron non-equilibrium energy transfer processes in the thermal transport of zirconium alloy coating, to distinguish the contributions from phonon and electron thermal conductivity of Zr alloys becomes crucial and necessary. In this work, we successfully predicted the lattice thermal conductivities of zirconium, Zr-Sn and Zr-Nb using machine learning potentials. Sn and Nb doping leads to a significant decrease in lattice thermal conductivity, which is mainly due to the alterations in phonon group velocity and phonon scattering. The larger atomic mass of doping elements and weakened interatomic interactions of Zr-Nb together lead to a significant decrease in phonon group velocity. Doping Sn and Nb also increases phonon-phonon scattering rate and three-phonon scattering channels, resulting in a shortening in phonon lifetime and a decrease in lattice thermal conductivity.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] End-to-end material thermal conductivity prediction through machine learning
    Srivastava, Yagyank
    Jain, Ankit
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (22)
  • [42] Prediction of soil thermal conductivity using individual and ensemble machine learning models
    Wang, Caijin
    Wu, Meng
    Cai, Guojun
    He, Huan
    Zhao, Zening
    Chang, Jianxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (11) : 5415 - 5432
  • [43] Room Temperature Lattice Thermal Conductivity of GeSn Alloys
    Concepcion, Omar
    Tiscareno-Ramirez, Jhonny
    Chimienti, Ada Angela
    Classen, Thomas
    Corley-Wiciak, Agnieszka Anna
    Tomadin, Andrea
    Spirito, Davide
    Pisignano, Dario
    Graziosi, Patrizio
    Ikonic, Zoran
    Zhao, Qing Tai
    Gruetzmacher, Detlev
    Capellini, Giovanni
    Roddaro, Stefano
    Virgilio, Michele
    Buca, Dan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4394 - 4401
  • [44] LATTICE THERMAL CONDUCTIVITY OF SOME PALLADIUM AND PLATINUM ALLOYS
    FLETCHER, R
    GREIG, D
    PHILOSOPHICAL MAGAZINE, 1967, 16 (140): : 303 - &
  • [45] Lattice thermal conductivity of disordered NiPd and NiPt alloys
    Alam, Aftab
    Mookerjee, Abhijit
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (19) : 4589 - 4608
  • [46] LATTICE THERMAL CONDUCTIVITY OF SOME COPPER AND SILVER ALLOYS
    SRIVASTAVA, BN
    CHATTERJ.S
    SEN, SK
    CHAKRABO.DK
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1970, 3 (02): : S169 - +
  • [47] Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method
    Li, Hongxia
    Xu, Wenjun
    Zhang, Yufei
    Yang, Shenglan
    Zhang, Lijun
    Liu, Bin
    Luo, Qun
    Li, Qian
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (01) : 129 - 137
  • [48] Machine Learning Assisted Design of High Thermal Conductivity and High Strength Mg Alloys
    Liu, Huafeng
    Nakata, Taiki
    Xu, Chao
    Zhao, Deli
    Zhu, Lin
    Qu, Nan
    Ding, Haoyang
    Deng, Kunkun
    Nie, Kaibo
    Liu, Tao
    Tang, Guangze
    Wang, Xiaojun
    Kamado, Shigeharu
    Geng, Lin
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2025, 56 (05): : 1534 - 1551
  • [49] Machine learning enabled efficient prediction and accelerated discovery of palladium alloys membranes for hydrogen separation
    Yang, Duo
    Xu, Pengchong
    Xiang, Qiaobang
    Xue, Wei
    Liao, Ningbo
    JOURNAL OF MEMBRANE SCIENCE, 2025, 720
  • [50] Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques
    Qin, Guangzhao
    Wei, Yi
    Yu, Linfeng
    Xu, Jinyuan
    Ojih, Joshua
    Rodriguez, Alejandro David
    Wang, Huimin
    Qin, Zhenzhen
    Hu, Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (11) : 5801 - 5810