Topology optimization of Stokes eigenvalues by a level set method

被引:0
|
作者
Li, Jiajie [1 ]
Qian, Meizhi [2 ]
Zhu, Shengfeng [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[3] Minist Educ, Key Lab MEA, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Stokes eigenvalue; Topology optimization; Level set method; Relaxation; Eulerian derivative; Two-grid; FINITE-ELEMENT-METHOD; SHAPE OPTIMIZATION; DIRICHLET; APPROXIMATION; ALGORITHMS;
D O I
10.1016/j.camwa.2025.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a level set method for a Stokes eigenvalue optimization problem. A relaxed approach is employed first to approximate the Stokes eigenvalue problem and transform the original shape optimization problem into a topology optimization model. Then the distributed shape gradient is used in numerical algorithms based on a level set method. Single-grid and efficient two-grid level set algorithms are developed for the relaxed optimization problem. A two-grid mixed finite element scheme that has reliable accuracy and asymptotically optimal convergence is shown to improve the efficiency of the Stokes eigenvalue solver. Thus, it can save computational efforts of the whole optimization algorithm. Two and three-dimensional numerical results are reported to show effectiveness and efficiency of the algorithms.
引用
收藏
页码:50 / 71
页数:22
相关论文
共 50 条
  • [31] A level set method for topology optimization using AOS scheme
    Luo, Junzhao
    Chen, Liping
    Luo, Zhen
    Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2008, 29 (02): : 175 - 180
  • [32] Level Set Method for Shape and Topology Optimization of Contact Problems
    Myslinski, Andrzej
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 397 - 410
  • [33] Topology optimization of hyperelastic structures using a level set method
    Chen, Feifei
    Wang, Yiqiang
    Wang, Michael Yu
    Zhang, Y. F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 437 - 454
  • [34] Shape and topology optimization based on the convected level set method
    Kentaro Yaji
    Masaki Otomori
    Takayuki Yamada
    Kazuhiro Izui
    Shinji Nishiwaki
    Olivier Pironneau
    Structural and Multidisciplinary Optimization, 2016, 54 : 659 - 672
  • [35] A level set topology optimization method for the buckling of shell structures
    Scott Townsend
    H. Alicia Kim
    Structural and Multidisciplinary Optimization, 2019, 60 : 1783 - 1800
  • [36] Binary level set method for topology optimization of variational inequalities
    Myśliński, Andrzej
    IFIP Advances in Information and Communication Technology, 2014, 443 : 199 - 209
  • [37] A level set method in shape and topology optimization for variational inequalities
    Fulmanski, Piotr
    Laurain, Antoine
    Scheid, Jean-Francois
    Sokolowski, Jan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 413 - 430
  • [38] Structural topology optimization using an enhanced level set method
    Shojaee, S.
    Mohammadian, M.
    SCIENTIA IRANICA, 2012, 19 (05) : 1157 - 1167
  • [39] A Parallel Level-Set Based Method for Topology Optimization
    Wu, Tao
    Xu, Hao
    Hu, Qiangwen
    Zhao, Yansong
    Peng, Ying
    Chen, Lvjie
    Fu, Yu
    PROCEEDINGS OF THE 2014 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2014, : 505 - 509
  • [40] A level set method for shape and topology optimization of coated structures
    Wang, Yaguang
    Kang, Zhan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 553 - 574