Achieving exceptional strength-ductility synergy in a 3D-printed CrCoNi medium-entropy alloy with machine-learning assistance

被引:0
|
作者
Zhu, Yan [1 ]
Li, Yusen [1 ]
Yan, Zhongwei [3 ]
Song, Changhui [3 ]
Tian, Jindong [1 ]
Yan, Shaohua [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen MSU BIT Univ, Inst Adv Interdisciplinary Technol, Shenzhen 518172, Peoples R China
[3] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Peoples R China
关键词
Additive manufacturing; Machine learning; Processing parameters; Medium-entropy alloy; Mechanical property; Deformation mechanisms; MECHANICAL-PROPERTIES; MICROSTRUCTURE; STEEL; TEMPERATURE; STRESS;
D O I
10.1016/j.matchar.2025.114990
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optimization of processing parameters is of great importance in additive manufacturing (AM) of metal alloys. Conventional trial-and-error approach is time- and cost-consumable, and the optimized parameters are sometimes sub-optimal, leading to the strength and ductility is not desirable. In this work, we employed Gaussian Process Regression machine learning (ML) to quickly find the optimized parameters for AM of CrCoNi MEA with relative density higher than 99 %. Using the optimized parameters, the additively manufactured CrCoNi MEA exhibited a tensile strength of 743 MPa and ductility of 59.5 %. The combination of the strength and ductility is 44.21GPa%, exceeding that of other CrCoNi MEA fabricated by AM without ML assistance. Such exceptional strength-ductility synergy was attributed to the original microstructures featuring fine grains, high dislocation density, and the deformed microstructural defects of twins, nanoscale network of stacking faults, dislocations, and the interactions between these defects. The method in this work sheds new sights into optimization of AM processing parameters and producing metal alloys with great strength-ductility synergy.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Enhancing strength and ductility of CrCoNi medium-entropy alloy through the 9R phase and doping
    Lu, Ni
    Li, Bingkang
    Wang, Junkai
    Zhang, Chuan -Hui
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 312
  • [42] In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy
    Zhou, Kexuan
    Cui, Dingcong
    Chai, Zishu
    Zhang, Yashan
    Yang, Zhongsheng
    Zhu, Chao
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    ADDITIVE MANUFACTURING, 2023, 66
  • [43] Developing novel ultra-thin refractory medium-entropy foils with excellent strength-ductility synergy
    Guo, Sheng-Li
    Zhang, Wei
    Yan, Xue-Hui
    Wang, Guang-Zong
    He, Ke-Hang
    Zhu, Bao-Hong
    Qiu, Hao-Chen
    Wu, Shuai-Shuai
    Jiang, Wei
    RARE METALS, 2025, 44 (02) : 1380 - 1391
  • [44] Dual heterogeneous structured medium-entropy alloys showing a superior strength-ductility synergy at cryogenic temperature
    Zhang, Zihan
    Wang, Wei
    Qin, Shuang
    Yang, Muxin
    Wang, Jing
    Jiang, Ping
    Yuan, Fuping
    Wu, Xiaolei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 3262 - 3276
  • [45] Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault
    Liu, Li-Xue
    Pan, Jie
    Zhang, Cheng
    Xu, Jing-Yu
    Guo, Rong
    Liu, Lin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 843
  • [46] Achieving high strength-ductility synergy in iron-rich medium -entropy alloy by structure change after heat treatment
    Zheng, Zehong
    Jin, Li
    Shen, Qingkai
    Yu, Xiaoyan
    Ou, Ning
    Dong, Changwen
    Zhu, Qiang
    Xue, Jiaxiang
    INTERMETALLICS, 2025, 178
  • [47] Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon
    Shang, Y. Y.
    Wu, Y.
    He, J. Y.
    Zhu, X. Y.
    Liu, S. F.
    Huang, H. L.
    An, K.
    Chen, Y.
    Jiang, S. H.
    Wang, H.
    Liu, X. J.
    Lu, Z. P.
    INTERMETALLICS, 2019, 106 : 77 - 87
  • [48] Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off
    Chang, H.
    Zhang, T. W.
    Ma, S. G.
    Zhao, D.
    Xiong, R. L.
    Wang, T.
    Li, Z. Q.
    Wang, Z. H.
    MATERIALS & DESIGN, 2021, 197
  • [49] Dual precipitates and heterogeneous fine-grain structure induced strength-ductility synergy in a CoCrNi-based medium-entropy alloy
    Chen, Yongan
    Li, Dazhao
    Xie, Ruofei
    Lu, Haitao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 867
  • [50] Strength-ductility synergy and grain refinement mechanisms in a Co-Cr-Ni medium-entropy alloy with novel analogous harmonic structure
    Du, Shiyu
    Zhang, Tuanwei
    Jiao, Zhiming
    Zhao, Dan
    Wang, Jianjun
    Xiong, Renlong
    Kim, Hyoung Seop
    Wang, Zhihua
    SCRIPTA MATERIALIA, 2023, 235