ESTABLISHMENT OF NON-INVASIVE PREDICTION MODELS FOR DIAGNOSIS OF SUBTYPES AND COLLAGEN CONTENT OF UTERINE LEIOMYOMAS BY MACHINE LEARNING USING MRI DATA

被引:0
|
作者
Tamehisa, Tetsuro [1 ]
Sato, Shun [1 ]
Tamura, Isao [1 ]
Sugino, Norihiro [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Med, Ube, Yamaguchi, Japan
关键词
D O I
暂无
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
P-664
引用
收藏
页码:E393 / E393
页数:1
相关论文
共 50 条
  • [21] Diagnosis of Non-invasive Glucose Monitoring by Integrating IoT and Machine Learning
    Satuluri V.K.R.R.
    Ponnusamy V.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (06): : 435 - 443
  • [22] Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach
    Ismail, Siti Nor Ashikin
    Nayan, Nazrul Anuar
    Jaafar, Rosmina
    May, Zazilah
    SENSORS, 2022, 22 (16)
  • [23] A machine learning method for acute hypotensive episodes prediction using only non-invasive parameters
    Zhang, Guang
    Yuan, Jing
    Yu, Ming
    Wu, Taihu
    Luo, Xi
    Chen, Feng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
  • [24] Non-invasive prediction mechanism for COVID-19 disease using machine learning algorithms
    Bhardwaj, Arnav
    Agarwal, Hitesh
    Rani, Anuj
    Srivastava, Prakash
    Kumar, Manoj
    Gupta, Sunil
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURES, 2024, 20 (02) : 111 - 124
  • [25] The prototype device for non-invasive diagnosis of arteriovenous fistula condition using machine learning methods
    Marcin Grochowina
    Lucyna Leniowska
    Agnieszka Gala-Błądzińska
    Scientific Reports, 10
  • [26] The prototype device for non-invasive diagnosis of arteriovenous fistula condition using machine learning methods
    Grochowina, Marcin
    Leniowska, Lucyna
    Gala-Bladzinska, Agnieszka
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [27] A Machine Learning Approach for the Prediction of the Progression of Cardiovascular Disease based on Clinical and Non-Invasive Imaging Data
    Kigka, Vassiliki, I
    Georga, Eleni, I
    Sakellarios, Antonis, I
    Tachos, Nikolaos S.
    Andrikos, Ioannis
    Tsompou, Panagiota
    Rocchiccioli, Silvia
    Pelosi, Gualtiero
    Parodi, Oberdan
    Michalis, Lampros K.
    Fotiadis, Dimitrios, I
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 6108 - 6111
  • [28] Non-invasive prediction of glioma tumor stemness using multimodal MRI
    Davoodi-Bojd, Esmaeil
    Malta, Tathiane
    Griffith, Brent
    Snyder, James
    Walbert, Tobias
    Noushmehr, Houtan
    Soltanian-Zadeh, Hamid
    CANCER RESEARCH, 2019, 79 (13)
  • [29] Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices
    Jeong, Heejoon
    Kim, Donghee
    Kim, Dong Won
    Baek, Seungho
    Lee, Hyung-Chul
    Kim, Yusung
    Ahn, Hyun Joo
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2024, 38 (06) : 1357 - 1365
  • [30] Machine learning-assisted prediction of pneumonia based on non-invasive measures
    Effah, Clement Yaw
    Miao, Ruoqi
    Drokow, Emmanuel Kwateng
    Agboyibor, Clement
    Qiao, Ruiping
    Wu, Yongjun
    Miao, Lijun
    Wang, Yanbin
    FRONTIERS IN PUBLIC HEALTH, 2022, 10