Interactive and Supervised Dual-Mode Attention Network for Remote Sensing Image Change Detection

被引:0
|
作者
Ren, Hongjin [1 ]
Xia, Min [1 ]
Weng, Liguo [1 ]
Lin, Haifeng [2 ]
Huang, Junqing [3 ]
Hu, Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Accuracy; Semantics; Training; Decoding; Convolutional neural networks; Computational modeling; Spatiotemporal phenomena; Noise; Bitemporal feature interaction; change detection; deep supervision; multiscale fusion; UNSUPERVISED CHANGE DETECTION; BUILDING CHANGE DETECTION; SIAMESE NETWORK; FUSION;
D O I
10.1109/TGRS.2025.3540864
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid advancement of remote sensing technology, change detection using bitemporal remote sensing images has significant applications in land use planning and environmental monitoring. The emergence of convolutional neural networks (CNNs) has accelerated the development of deep learning-based change detection. However, existing deep learning algorithms exhibit limitations in understanding bitemporal feature relationships and accurately identifying change region boundaries. Moreover, they inadequately explore feature interactions between bitemporal images before extracting differential features. To address these issues, this article proposes a novel interactive and supervised dual-mode attention network (ISDANet). In the feature encoding stage, we employ the lightweight MobileNetV2 as the backbone to extract bitemporal features. Additionally, we design the neighbor feature aggregation module (NFAM) to aggregate semantic features from adjacent scales within the dual-branch backbone, enhancing the representation of temporal features. We further introduce the interactive attention enhancement module (IAEM), which effectively integrates self-attention and cross-attention mechanisms. This establishes deep interactions between bitemporal features, suppresses irrelevant noise, and ensures precise focus on true change regions. In the feature decoding stage, the supervised attention module (SAM) reweights differential features and leverages supervisory signals to guide the learning of attention mechanisms, significantly improving boundary detection accuracy. SAM dynamically aggregates multilevel features, balancing high-level semantics and low-level details to capture subtle changes in complex scenes. The proposed model achieves F1 scores that are 0.28%, 1.6%, and 0.76% higher than the best comparative method, spatiotemporal enhancement and interlevel fusion network (SEIFNet), on three CD datasets [LEVIR-CD, Guangzhou dataset (GZ-CD), and Sun Yat-sen University dataset (SYSU-CD)], respectively, while maintaining a lightweight design with only 6.93 M parameters and 3.46G floating-point operations (FLOPs). The code is available at https://github.com/RenHongjin6/ISDANet.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] MDMASNet: A dual-task interactive semi-supervised remote sensing image segmentation method
    Zhang, Liangji
    Yang, Zaichun
    Zhou, Guoxiong
    Lu, Chao
    Chen, Aibin
    Ding, Yao
    Wang, Yanfeng
    Li, Liujun
    Cai, Weiwei
    SIGNAL PROCESSING, 2023, 212
  • [42] Semisupervised Adaptive Ladder Network for Remote Sensing Image Change Detection
    Shi, Jiao
    Wu, Tiancheng
    Qin, A. K.
    Lei, Yu
    Jeon, Gwanggil
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
    Zhang, Cui
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Geometric Variation Adaptive Network for Remote Sensing Image Change Detection
    Huo, Shuwei
    Zhou, Yuan
    Zhang, Lei
    Feng, Yanjie
    Xiang, Wei
    Kung, Sun-Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [45] An Efficient Lightweight Neural Network for Remote Sensing Image Change Detection
    Song, Kaiqiang
    Cui, Fengzhi
    Jiang, Jie
    REMOTE SENSING, 2021, 13 (24)
  • [46] Heterogeneous remote sensing image change detection based on hybrid network
    Zhou Y.
    Li X.
    Yang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 451 - 460
  • [47] High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network
    Wu, Chaoyang
    Yang, Le
    Guo, Cunge
    Wu, Xiaosuo
    ELECTRONICS, 2024, 13 (03)
  • [48] REMOTE SENSING IMAGE CHANGE DETECTION BASED ON DEEP SIAMESE NEURAL NETWORK WITH CONVOLUTIONAL LSTM AND CHANNEL ATTENTION
    Wang, Linlin
    Zhang, Junping
    Guo, Qingle
    Liu, Jian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3227 - 3230
  • [49] Remote sensing image road network detection based on channel attention mechanism
    Shan, Chuanhui
    Geng, Xinlong
    Chao, Han
    HELIYON, 2024, 10 (18)
  • [50] ISANet: An Interactive Self-attention Network for Cropland Image Change Detection
    Dong, Sijun
    Chen, Yanrui
    Wu, Fann
    Gao, Zhi
    Meng, Xiaoliang
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 862 - 867