Exhumation history of the Shanxi Rift, Central Asia, derived from low-temperature thermochronology

被引:1
|
作者
Wang, Hongtao [1 ]
Li, Shichao [1 ,2 ]
Yang, Xiaopeng [1 ]
Zuza, Andrew, V [3 ]
Liu, Fangbin [4 ]
Sheldrick, Thomas C. [5 ]
He, Xiaoqi [1 ]
Zhang, Jin [6 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China
[2] Minist Nat Resources, Key Lab Mineral Resources Evaluat Northeast Asia, Changchun 130061, Peoples R China
[3] Univ Nevada, Nevada Bur Mines & Geol, Reno, NV 89557 USA
[4] Qilu Normal Univ, Sch Geog & Tourism, Jinan 250200, Peoples R China
[5] Univ Leicester, Sch Geog Geol & Environm, Univ Rd, Leicester LE1 7RH, England
[6] Chinese Acad Geol Sci, Inst Geol, Key Lab Deep Earth Dynam, Minist Nat Resources, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
NORTH CHINA CRATON; APATITE FISSION-TRACK; TIBETAN PLATEAU; PACIFIC PLATE; STATISTICAL-MODELS; EASTERN CHINA; EVOLUTION; TECTONICS; FAULT; DEFORMATION;
D O I
10.1130/B37693.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Shanxi Rift system in Central Asia is a prominent Cenozoic intraplate rift system within the North China craton that also preserves a record of Mesozoic contractional deformation. The overprinting phases of deformation complicate interpretations of its tectonic history. Here, we present new apatite fission-track (AFT) thermochronology data from the northern flank of the rift system and compile a large thermochronology dataset from around the Shanxi Rift. We also present a new seismic reflection profile for the central Datong Basin to investigate synkinematic basin sediments within the rift. Thermal inverse models of low-temperature thermochronology data reveal temporal and spatial variations in exhumation rates across the rift flanks. The northern rift started exhuming in the Late Jurassic- Early Cretaceous, whereas the central and southern flanks experienced mainly Cenozoic exhumation. Between 50 Ma and 30 Ma, exhumation rates diminished from south to north but markedly accelerated again after 20 Ma. These modeling results reveal that normal faulting along the rift flank was active between 40 Ma and 25 Ma coupled with basin subsidence. The main phase of rifting initiated in the Paleogene, with deformation propagating from southwest to northeast. Postulated Late Jurassic crustal shortening in the Shanxi Rift system followed by Early Cretaceous extension explain the ages in the north, and these dynamics were probably driven by west-dipping flat-slab subduction of the Izanagi (Paleo-Pacific) slab and subsequent slab rollback. Cenozoic rifting across the Shanxi Rift was caused by the combined impacts of Pacific slab dynamics and the growing margin of the Tibetan Plateau.
引用
收藏
页码:1315 / 1334
页数:20
相关论文
共 50 条
  • [31] Low-temperature thermochronology constraints on the mesozoic-cenozoic exhumation of the Huangling massif in the Middle Yangtze Block, Central China
    Xiang Ge
    Chuanbo Shen
    Zhao Yang
    Lianfu Mei
    Sihuang Xu
    Lei Peng
    Zhaoqian Liu
    Journal of Earth Science, 2013, 24 : 541 - 552
  • [32] Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China
    Ge, Xiang
    Shen, Chuanbo
    Yang, Zhao
    Mei, Lianfu
    Xu, Sihuang
    Peng, Lei
    Liu, Zhaoqian
    JOURNAL OF EARTH SCIENCE, 2013, 24 (04) : 541 - 552
  • [33] Cenozoic tectonic evolution of southeastern Thailand derived from low-temperature thermochronology
    Nachtergaele, Simon
    Glorie, Stijn
    Morley, Christopher
    Charusiri, Punya
    Kanjanapayont, Pitsanupong
    Vermeesch, Pieter
    Carter, Andrew
    Van Ranst, Gerben
    De Grave, Johan
    JOURNAL OF THE GEOLOGICAL SOCIETY, 2020, 177 (02) : 395 - 411
  • [34] Denudation history of the Kiso Range, central Japan, and its tectonic implications: Constraints from low-temperature thermochronology
    Sueoka, Shigeru
    Kohn, Barry P.
    Tagami, Takahiro
    Tsutsumi, Hiroyuki
    Hasebe, Noriko
    Tamura, Akihiro
    Arai, Shoji
    ISLAND ARC, 2012, 21 (01) : 32 - 52
  • [35] Uplift and denudation history of the Ellsworth Mountains: insights from low-temperature thermochronology
    Bastias-Silva, Joaquin
    Chew, David
    Poblete, Fernando
    Castillo, Paula
    Guenthner, William
    Grunow, Anne
    Dalziel, Ian W. D.
    Dias, Airton N. C.
    Ramirez de Arellano, Cristobal
    Fernandez, Rodrigo
    SOLID EARTH, 2024, 15 (04) : 555 - 566
  • [36] The Cenozoic spatiotemporal exhumation of the SE Tibetan Plateau: insight from the data mining and modeling of low-temperature thermochronology
    Liu, Fangbin
    Wang, Min
    Liu, Honghua
    Ni, Ran
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [37] From nappe stacking to out-of-sequence postcollisional deformations: Cretaceous to Quaternary exhumation history of the SE Carpathians assessed by low-temperature thermochronology
    Merten, S.
    Matenco, L.
    Foeken, J. P. T.
    Stuart, F. M.
    Andriessen, P. A. M.
    TECTONICS, 2010, 29
  • [38] Cenozoic Exhumation of the Ailaoshan-Red River Shear Zone: New Insights From Low-Temperature Thermochronology
    Wang, Yang
    Wang, Yuejun
    Schoenbohm, Lindsay M.
    Zhang, Peizhen
    Zhang, Bo
    Sobel, Edward R.
    Zhou, Renjie
    Shi, Xuhua
    Zhang, Jinjiang
    Stockli, Daniel F.
    Guo, Xiaofei
    TECTONICS, 2020, 39 (09)
  • [39] Deciphering the Cenozoic Exhumation History of the Eastern Pyrenees Along a Crustal-Scale Normal Fault Using Low-Temperature Thermochronology
    Milesi, G.
    Monie, P.
    Soliva, R.
    Muench, P.
    Valla, P. G.
    Brichau, S.
    Bonno, M.
    Martin, C.
    Bellanger, M.
    TECTONICS, 2022, 41 (04)
  • [40] Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology
    Jing Liu-Zeng
    Zhang, Jinyu
    McPhillips, Devin
    Reiners, Peter
    Wei Wang
    Pik, Raphael
    Zeng, Lingsen
    Hoke, Greg
    Xie, Kejia
    Ping Xiao
    Zheng, Dewen
    Ge, Yukui
    EARTH AND PLANETARY SCIENCE LETTERS, 2018, 490 : 62 - 76