Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites

被引:0
|
作者
Qiao, Haiyu [1 ]
Li, Qian [1 ]
Chen, Yani [1 ]
Liu, Yayun [1 ]
Jiang, Ning [1 ]
Wang, Chuanyang [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
continuous natural fiber; bamboo fiber; 3D print; fiber-plastic interface; mechanical properties; thermal properties; EXTRUSION;
D O I
10.3390/ma18030593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Continuous fibers with outstanding mechanical performance due to the continuous enhancement effect, show wide application in aerospace, automobile, and construction. There has been great success in developing continuous synthetic fiber-reinforced composites, such as carbon fibers or glass fibers; however, most of which are nonrenewable, have a high processing cost, and energy consumption. Bio-sourced materials with high reinforced effects are attractive alternatives to achieve a low-carbon footprint. In this study, continuous bamboo fiber-reinforced polyethylene (CBF/PE) composites were prepared via a facile two-step method featuring alkali treatment followed by 3D printing. Alkali treatment as a key processing step increases surface area and surface wetting, which promote the formation of mechanical riveting among bamboo fibers and matrix. The obtained treated CBF (T-CBF) also shows improved mechanical properties, which enables a superior reinforcement effect. 3D printing, as a fast and local heating method, could melt the outer layer PE tube and impregnate molten plastics into fibers under pressure and heating. The resulting T-CBF/PE composite fibers can achieve a tensile strength of up to 15.6 MPa, while the matrix PE itself has a tensile strength of around 7.7 MPa. Additionally, the fracture morphology of printed bulks from composite fibers shows the alkali-treated fibers-PE interface is denser and could transfer more load. The printed bulks using T-CBF/PE shows increased tensile strength and Young's modulus, with 77%- and 1.76-times improvement compared to pure PE. Finally, the effect of printing paraments on mechanical properties were analyzed. Therefore, this research presents a potential avenue for fabricating continuous natural fiber-reinforced composites.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Impact and tensile performance of continuous 3D-printed Kevlar fiber-reinforced composites manufactured by fused deposition modelling
    Kamal Kumar Ojha
    Gaurav Gugliani
    Vishal Francis
    Progress in Additive Manufacturing, 2023, 8 : 1043 - 1057
  • [42] 3D printed continuous fiber-reinforced composites: State of the art and perspectives
    Chen X.
    Yao L.
    Guo L.
    Sun Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (10):
  • [43] Mechanical properties and damage failure of 3D-printed continuous carbon fiber-reinforced composite honeycomb sandwich structures with fiber-interleaved core
    Feng, Jiafan
    Yao, Liaojun
    Lyu, Zhangming
    Wu, Zihao
    Zhang, Guobin
    Zhao, Hefei
    POLYMER COMPOSITES, 2023, 44 (03) : 1980 - 1992
  • [44] Red mud utilization in fiber-reinforced 3D-printed concrete: Mechanical properties and environmental impact analysis
    Sun, Junbo
    Wang, Yufei
    Yang, Xin
    Wang, Haihong
    Li, Shengping
    Al-azzani, Hisham
    Zhao, Hongyu
    Wang, Xiangyu
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 462
  • [45] The role of the fiber-matrix interface in the tensile properties of short fiber-reinforced 3D-printed polylactic acid composites
    Toth, Csenge
    Lukacs, Norbert Laszlo
    Kovacs, Norbert Krisztian
    POLYMER COMPOSITES, 2024, 45 (15) : 13589 - 13602
  • [46] Anomalous matrix and interlayer pore structure of 3D-printed fiber-reinforced cementitious composites
    Yang, Rijiao
    Zeng, Qiang
    Peng, Yu
    Wang, Hailong
    Wang, Zhendi
    CEMENT AND CONCRETE RESEARCH, 2022, 157
  • [47] Anomalous matrix and interlayer pore structure of 3D-printed fiber-reinforced cementitious composites
    Yang, Rijiao
    Zeng, Qiang
    Peng, Yu
    Wang, Hailong
    Wang, Zhendi
    CEMENT AND CONCRETE RESEARCH, 2022, 157
  • [48] Recent developments in improving the fracture toughness of 3D-printed fiber-reinforced polymer composites
    Khan, Tayyab
    Ali, Murad
    Riaz, Zakia
    Butt, Haider
    Abu Al-Rub, Rashid K.
    Dong, Yu
    Umer, Rehan
    COMPOSITES PART B-ENGINEERING, 2024, 283
  • [49] A multiscale study of heat treatment effects on the interlayer mechanical properties of 3D printed continuous carbon fiber-reinforced composites
    Zhu, Wanying
    Li, Shixian
    Long, Hongmei
    Wang, Kui
    Rao, Yanni
    Peng, Yong
    Ahzi, Said
    POLYMER COMPOSITES, 2024, 45 (05) : 3918 - 3930
  • [50] Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites
    Wang, Kui
    Long, Hongmei
    Chen, Ying
    Baniassadi, Majid
    Rao, Yanni
    Peng, Yong
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 147