Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites

被引:0
|
作者
Qiao, Haiyu [1 ]
Li, Qian [1 ]
Chen, Yani [1 ]
Liu, Yayun [1 ]
Jiang, Ning [1 ]
Wang, Chuanyang [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
continuous natural fiber; bamboo fiber; 3D print; fiber-plastic interface; mechanical properties; thermal properties; EXTRUSION;
D O I
10.3390/ma18030593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Continuous fibers with outstanding mechanical performance due to the continuous enhancement effect, show wide application in aerospace, automobile, and construction. There has been great success in developing continuous synthetic fiber-reinforced composites, such as carbon fibers or glass fibers; however, most of which are nonrenewable, have a high processing cost, and energy consumption. Bio-sourced materials with high reinforced effects are attractive alternatives to achieve a low-carbon footprint. In this study, continuous bamboo fiber-reinforced polyethylene (CBF/PE) composites were prepared via a facile two-step method featuring alkali treatment followed by 3D printing. Alkali treatment as a key processing step increases surface area and surface wetting, which promote the formation of mechanical riveting among bamboo fibers and matrix. The obtained treated CBF (T-CBF) also shows improved mechanical properties, which enables a superior reinforcement effect. 3D printing, as a fast and local heating method, could melt the outer layer PE tube and impregnate molten plastics into fibers under pressure and heating. The resulting T-CBF/PE composite fibers can achieve a tensile strength of up to 15.6 MPa, while the matrix PE itself has a tensile strength of around 7.7 MPa. Additionally, the fracture morphology of printed bulks from composite fibers shows the alkali-treated fibers-PE interface is denser and could transfer more load. The printed bulks using T-CBF/PE shows increased tensile strength and Young's modulus, with 77%- and 1.76-times improvement compared to pure PE. Finally, the effect of printing paraments on mechanical properties were analyzed. Therefore, this research presents a potential avenue for fabricating continuous natural fiber-reinforced composites.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Impact Resistance of 3D-Printed Continuous Hybrid Fiber-Reinforced Composites
    Zia, Ali Akmal
    Tian, Xiaoyong
    Ahmad, Muhammad Jawad
    Tao, Zhou
    Meng, Luo
    Zhou, Jin
    Zhang, Daokang
    Zhang, Wenxin
    Qi, Jiangwei
    Li, Dichen
    POLYMERS, 2023, 15 (21)
  • [2] Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites
    Mohammadizadeh, Mahdi
    Fidan, Ismail
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2021, 5 (03):
  • [3] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    De la Fuente, Andres
    Castillo, Rodrigo
    Onate, Angelo
    Hermosilla, Rodolfo
    Escudero, Benjamin
    Sepulveda, Joaquin
    Vargas-Silva, Gustavo
    Melendrez, Manuel F.
    Tuninetti, Victor
    Medina, Carlos
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4): : 1575 - 1583
  • [4] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    Andrés De la Fuente
    Rodrigo Castillo
    Angelo Oñate
    Rodolfo Hermosilla
    Benjamín Escudero
    Joaquín Sepúlveda
    Gustavo Vargas-Silva
    Manuel F. Meléndrez
    Víctor Tuninetti
    Carlos Medina
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 1575 - 1583
  • [5] Investigation of recovery behavior on 3D-printed continuous plant fiber-reinforced composites
    Long, Yu
    Zhang, Zhongsen
    Bi, Zhixiong
    Fu, Kunkun
    Li, Yan
    ADDITIVE MANUFACTURING, 2024, 88
  • [6] Topology optimization of 3D-printed continuous fiber-reinforced composites considering manufacturability
    Yang, Zhe
    Fu, Kunkun
    Zhang, Zhongsen
    Zhang, Junming
    Li, Yan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 230
  • [7] Bamboo-inspired 3D printed continuous fiber-reinforced vascular composites
    Li, Qifeng
    Zhang, Dou
    Zhang, Shengbo
    Soete, Jeroen
    V. Lomov, Stepan
    Gorbatikh, Larissa
    Zeng, Chengjun
    COMPOSITES COMMUNICATIONS, 2025, 53
  • [8] Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar
    Li, Yeou-Fong
    Tsai, Pei-Jen
    Syu, Jin-Yuan
    Lok, Man-Hoi
    Chen, Huei-Shiung
    FIBERS, 2023, 11 (12)
  • [9] Mechanical properties of continuous bamboo fiber-reinforced biobased polyamide 11 composites
    Haddou, Geoffrey
    Dandurand, Jany
    Dantras, Eric
    Huynh Maiduc
    Hoang Thai
    Nguyen Vu Giang
    Tran Huu Trung
    Ponteins, Philippe
    Lacabanne, Colette
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (23)
  • [10] Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic
    Thiago Assis Dutra
    Rafael Thiago Luiz Ferreira
    Hugo Borelli Resende
    Alessandro Guimarães
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41